RK CFKII CSK PMC

Controllers for Stepping Motors

Additional Information

Technical Reference·····F-1	
General Information ···········G-1	

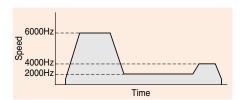
EMP400 Series ······	·········C-25
SC8800/SC8800E	······C-26
SG8030J	······C-27

Controllers for Stepping Motors

EMP400 Series

Page C-254

- Coordinated 2-axis moves via linear interpolation operation
- Step pulse rate up to 200 kHz
- General I/O: 8 inputs and 6 outputs
- Optional **OP300** operator interface unit available
- Ability to change velocity "on the fly"
- Also available as a single axis controller



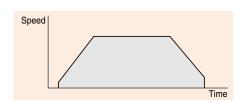
SC8800 SC8800E

Page C-266

- Encoder feedback
- Stand-alone single axis operation
- Select programs using a programmable controller
- Step pulse rate up to 800 kHz
- General I/O: 4 inputs and 2 outputs
- Daisy chain up to 35 axes

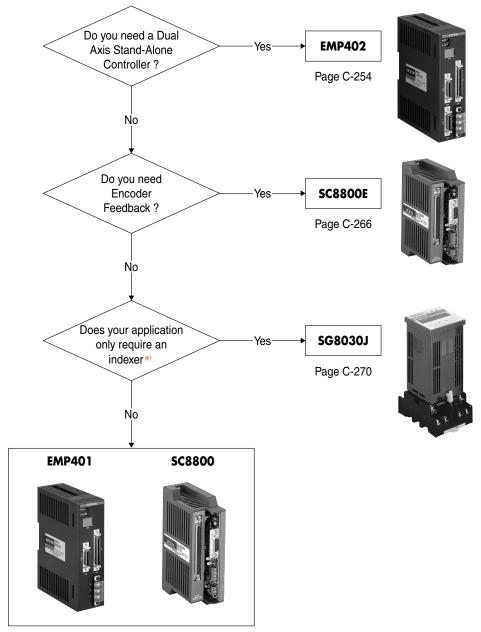
SG8030J

Page C-270


- Compact and simple controller
- Sequence control of four positioning operations
- Selective control of four positions
- Select operating modes using a programmable controller
- Step pulse rate up to 200 kHz

DIN Rail-Mount Model SG8030J-D

Panel-Mount Model SG8030J-U



PK/PV

UI2120G

Controller Selection Guide

Based on the needs of your application, determine the controller which best fits your needs.

*1 An Indexer is a device that provides step and direction output pulses, but does not have general (programmable) inputs or outputs.

Controller Comparison

	Dual Axis Motion Control	Serial Communication Port (RS232C)	Daisy Chain *2	Math Function	Encoder Feedback Connection	Sequences	Startup Program *3	Homing Function	Maximum Pulse Frequency	Inputs	Outputs
EMP402	YES	YES	NO	NO	NO	33 (1000 commands max.)	YES	YES	200 kHz	8 General + 22 Dedicated	6 General + 10 Dedicated
EMP401	NO	YES	NO	NO	NO	33 (1000 commands max.)	YES	YES	200 kHz	8 General + 15 Dedicated	6 General + 7 Dedicated
SC8800E	NO	YES	35 Devices	YES	YES	50 or 8 Kb of memory	YES	YES	800 kHz	4 General + 9 Dedicated	2 General + 4 Dedicated
SC8800	NO	YES	35 Devices	YES	NO	50 or 8 Kb of memory	YES	YES	800 kHz	4 General + 6 Dedicated	2 General + 4 Dedicated
SG8030J	NO	NO	NO	NO	NO	1 Sequence or 4 Data Positions	NO	YES	200 kHz	6 Dedicated	3 Dedicated

^{*2} Multiple controllers connected to one host communication port.

^{*3} A startup program executes when the controller is powered on. The **SG8030J** uses a START input to execute a sequence.

Programmable Motion Controller

EMP400 Series

The **EMP400** Series controllers allow easy programming using simple commands. The dual axis model provides coordinated moves via linear interpolation.

Various motion profiles can be achieved by using up to 32 sequence programs. 1 program can be dedicated as a STARTUP program.

Single axis model: EMP401

Dual axis model: EMP402

Features

Pulse Oscillation

Various operation commands are provided for positioning operation, return-to-home operation and dual axis linear interpolation functions. The operator only needs to set the parameters.

Sequence Function

A series of operation patterns can be programmed using dedicated commands. This is an ideal function for distributed system control.

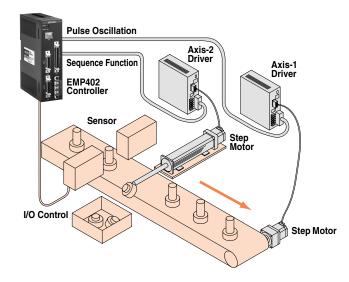
I/O Control

General-purpose I/O signals are provided in addition to dedicated I/Os such as pulse output and limit-sensor input. Synchronization with peripherals is also possible.

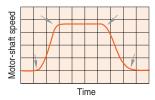
Function

Fast Response Time

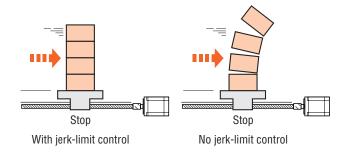
Pulse Oscillation


The time between a START signal input and a pulse output is 2 ms or less.

High-Speed Positioning & Low Vibration


The jerk-limit control function allows you to set a shorter acceleration/deceleration time compared with the use of linear acceleration/deceleration patterns. This reduces the overall positioning time.

What is jerk-limit control?


This term refers to the acceleration/deceleration patterns used to ensure the smoothness of speed change at the start of operation or when the machine enters a constantspeed mode from an acceleration mode. Since speed change becomes more smooth, vibration is reduced.

Motor Velocity Profile

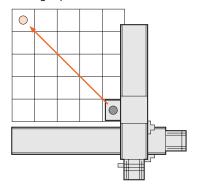
Effect of Type on Positioning Time

AS PLUS

SS

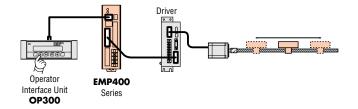
PMC

PK/PV


UI2120G

Positioning Operation

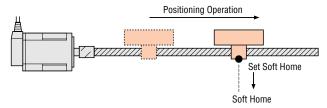
Supports both incremental mode (travel amount) and absolute mode (absolute-position).


Linear Interpolation Operation

Two axes are controlled simultaneously, allowing direct movement to a target position.

Teaching Function

The amount of travel can be changed by jogging the load into position via the **OP300** interface.



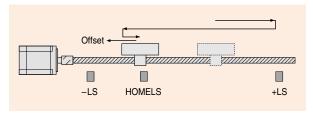
Continuous Operation

Pulse output continues until a specified input is received or a specified time is reached.

Set Soft Home (Clears the current position)

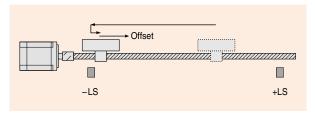
The controller has an internal absolute position counter. "0" position in this counter is soft home. The ability to set a voluntary position to soft home is available using RTNCR command.

Homing

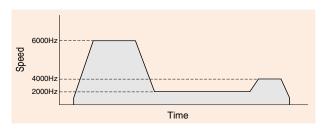

Ability to seek for a sensor representing a positioning reference point (home) is available.

Also available is the ability to set an offset from the home position.

High-speed return (three-sensor mode)


Using a predetermined sequence, the mechanical unit returns home at high speed from any position with three sensors monitoring the current position.

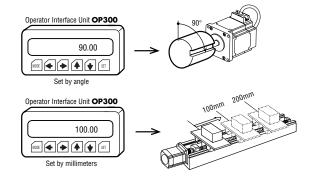
Since it's possible to specify the direction in which the home sensor is entered, backlash error doesn't occur in applications where positioning accuracy is critical.


Constant-speed return (two-sensor mode)

The mechanical unit returns home at a constant speed. This mode is effective when a compact slider is operated, since the stroke can be fully utilized.

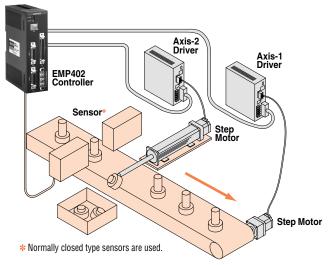
Speed Change on the Fly

Speed can be changed on the fly during continuous operation.



A Choice of Acceleration/Deceleration Patterns

Each operation can be programmed using linear patterns or jerk-limit control.


Distance Options

Set travel amount using various scaling units such as pulses. millimeters, or degrees.

Sequence Function

Connect a motor for transferring products to axis 1, another motor for ejecting nonconforming products to axis 2, and a sensor for detecting the height of transferred products to one of the general-purpose inputs.

Application Description

- (1) Transfer products via an index move of 30,000 pulses (axis 1).
- 2) Detect the height of the product using the sensor (general-purpose input 1).
- (3) Return to (1) if the detection result is acceptable.
- (4) If the detection result is not acceptable, perform an index move of 30,000 pulses and eject the nonconforming product (axis 2). Return to (2) and perform acceptability judgment for the next product.

Sample Code for Application Example

[1] V1 10000 [2] D1 +30000	; Axis 1 (transfer) ; Axis 1 (transfer)	Operating speed 10 kHz Travel amount 30,000 pulses
①→[3] INC1	; Axis 1 (transfer)	Incremental positioning operation
[4] DELAY 0.5	; Wait for 0.5 sec.	
②③→[5] CJMP 1,0,3	; Acceptability judgme	ent (general-purpose input 1 = sensor)
	; OFF = Go to step [3]	if OK
	; ON = Go to next step	if NG
④→[6] INC1	; Axis 1 (transfer)	Incremental positioning operation
[7] DELAY 0.5	; Wait for 0.5 sec.	
[8] V2 5000	; Axis 2 (ejection)	Operating speed 5,000 Hz
[9] D2 +1000	; Axis 2 (ejection)	Travel amount 1,000 pulses
[10] ABS2	; Axis 2 (ejection)	Absolute positioning operation
[11] D2 0	; Axis 2 (ejection)	Travel amount 0 pulse
[12] ABS2	; Axis 2 (ejection)	Absolute positioning operation
[13] JMP 5	· Jump to step [5]	

I/O Control

In addition to the signals for controlling the **EMP400** series (e.g., start, emergency stop, ready), a full range of other signals are available, including those necessary for motor control (e.g., pulse, alarm, limit sensor, home sensor) and general-purpose I/Os.

Control I/O (Dedicated)

START Input E-STOP Input **READY Output** MOVE Output **END Output** etc.

Motor Control I/O (Dedicated)

PULSE Output DIRECTION Output CCR Output ALARM Input END Input TIMING Input HOMELS Input SLIT Input etc.

General Purpose I/O

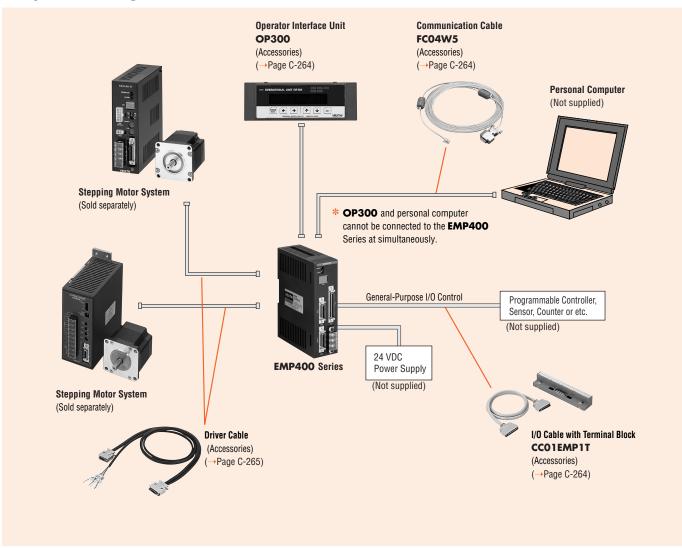
8 inputs 6 outputs

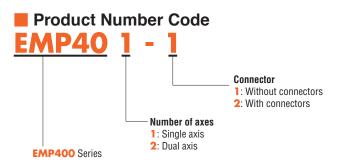
These signals can be easily controlled using conditional branching and timer processing.

AS AS PLUS ASC

SS

PMC


CSK


PK/PV

UI2120G

C-257

System Configuration

Product Line

Type	Number of Axes	Connector					
EMP401-1	Single axis	Without connectors					
EMP401-2	Sillyle axis	With connectors					
EMP402-1	Dual axis	Without connectors					
EMP402-2	Duai axis	With connectors					

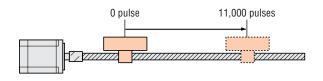
Command List

C	ommand	Description							
	ABS	Perform the positioning operation with the absolute position specified.							
	INC	Perform the positioning operation with the relative position specified.							
	MHOME	Perform the return to mechanical home operation.							
Matau aantuul	SCAN	Perform continuous operation.							
Motor control	RESET	Reset the software.							
	RTNCR	Set the current position to 0 (clear).							
	RUN	Execute the sequence program.							
	S	Decelerate the motor to a stop.							
	D	Set the travel amount and positioning data.							
	DOWEL	Set the operating intervals (dwell time).							
	Н	Set the direction of rotation.							
B	OFS	Set the offset travel amount.							
Data setting	RAMP	Set the acceleration/deceleration pattern and jerk limit time.							
	Т	Set the acceleration/deceleration rate.							
	V	Set the operating speed.							
	VS	Set the starting speed.							
	CJMP	Jump to a specified step when a given condition is satisfied.							
	JMP	Jump to a specified step.							
	DELAY	Set the delay time.							
	MU	Set parallel processing.							
Program control	LOOP	Set the loop.							
	ENDL	End the loop section.							
	END	End the sequence program.							
	IN	Wait for input.							
	OUT	Control the general-purpose output.							
	ACTL	Switch the logic setting for the sensor and alarm.							
	EEN	Set the use of END input.							
	ETIME	Set the END output time.							
Handinana aattima	ID	Perform the initial setting for a linear motion product.							
Hardware setting	PULSE	Set the pulse-output mode.							
	SEN	Set the home-detection mode.							
	TIM	Set the use of TIM input and SLIT input.							
	UNIT	Set the unit for travel amount.							
	EDIT	Edit the sequence program.							
	DEL	Delete the sequence program.							
Others	DWNLD	Download the sequence program.							
	UPLD	Upload the sequence program.							
	R	Check the system conditions.							

S

AS PLUS

SS

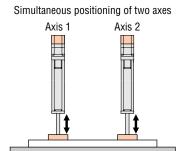

PMC

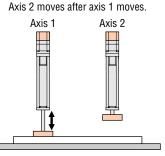
SS

PK/PV

Sample Programs

Positioning operation Sample, 1




[1] VS1 500 ; Starting speed 500 Hz [2] V1 1000 ; Operating speed 1,000 Hz

[3] T1 30.0 ; Acceleration/deceleration rate 30.0 ms/kHz [4] D1 +11000 ; Travel amount 11,000 pulses

[5] INC1 ; Execute relative positioning operation

Sample. 2 Inputting multiple operation patterns -

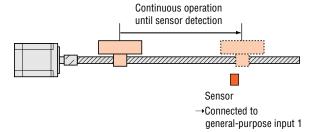
Seq 99 ; Hardware Setting

[7] D2 0

[1] UNIT1 0.02,1 ; Axis 1 Change to travel amount mm [2] UNIT2 0.02,1 ; Axis 2 Change to travel amount mm

Seq 1 : 2 axis execute at same time [1] V1 1000 ; Axis 1 Operating speed 1,000 Hz [2] D1 +50 : Axis 1 Travel amount 50 mm [3] D2 +50 Travel amount 50 mm ; Axis 2 [4] ABSC ; Axes 1, 2 Execute absolute positioning operation [5] DELAY 1.0 : Pause at 1-second internal timer : Axis 1 [6] D1 0 Travel amount 0 mm

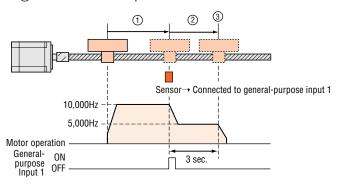
; Axis 2


[8] ABSC ; Axes 1, 2 Execute absolute positioning operation

Travel amount 0 mm

Sea 2 ; After axis 1 executes, axis 2 executes [1] V1 1000 Operating speed 1,000 Hz : Axis 1 [2] D1 +50 ; Axis 1 Travel amount 50 mm [3] ABS1 ; Axis 1 Execute absolute positioning operation [4] D1 0 : Axis 1 Travel amount 0 mm [5] ABS1 ; Axis 1 Execute absolute positioning operation [6] V2 2000 Operating speed 2,000 Hz : Axis 2 [7] D2 +50 ; Axis 2 Travel amount 50 mm [8] ABS2 ; Axis 2 Execute absolute positioning operation

[9] D2 0 ; Axis 2 Travel amount 0 mm [10] ABS2 ; Axis 2 Execute absolute positioning operation


Sample. 3 Positioning using a sensor

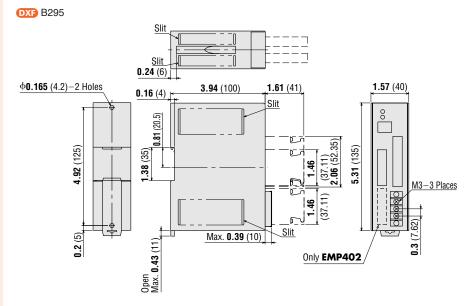
- [1] VS1 500 : Starting speed 500 Hz [2] V1 20000 ; Operating speed 20,000 Hz
- ; Acceleration/deceleration rate 30.0 ms/kHz [3] T1 30.0 [4] H1 + ; Direction of rotation + (CW direction) [5] SCAN1 ; Start continuous operation
- [6] IN 1,1 : General-purpose input 1 Waiting for ON [7] S1 ; Decelerate to a stop

Sample. 4 Multistep speed-change operation

- (1) Continuous operation at 10,000 Hz
- (2) Decelerate to 5,000 Hz upon sensor detection
- (3) Decelerate to a stop after three seconds

- [1] VS1 500 ; Starting speed 500 Hz [2] V1 10000 ; Operating speed 10,000 Hz
- ; Acceleration/deceleration rate 30.0 ms/kHz [3] T1 30.0 [4] H1 + ; Direction of rotation + (CW direction)
- [5] SCAN1 Start continuous operation
- General-purpose input 1 Waiting for ON [6] IN 1,1 [7] V1 5000 : Decelerate to 5.000 Hz
- [8] DELAY 3.0 : Wait time 3 seconds [9] S1 ; Decelerate to a stop

Specifications


	Number of programs		;	32						
Program	Capacity		1,000 commands							
	Input method	Command input via terminal program								
	Number of control axes		EMP401: Single axis	s · EMP402 : Dual axis						
	Pulse output mode		1- or 2-pulse	e output mode						
O a a illa ta u	Frequency	10	to 200 kHz (1-Hz incren	nent) Pulse duty 50% (Fix	ed)					
Oscillator Specifications	Acceleration/deceleration rate		0.5 to 1,000 ms/kHz (0	0.1 - ms/kHz increments)						
Оростоинопо	Acceleration/deceleration pattern		Linear/jerk	-limit control						
	Travel amount			215~+16,777,215 pulse 08~+8,388,607 pulse						
		Incremental Operation	Absolute Operation	Mechanical Home Seeking	Continuous Operation					
Operation	Linear acceleration/deceleration	V	V	V	V					
Pattern	Jerk-limit control	V	V	V	V					
	Dual axis linear interpolation operation	V	V	×	×					
	Speed change on the fly	change on the fly X X X								
Communication	Communication method		RS-232C ba	ased (3-wire)						
Specifications	Parameters	Ваг	ıd rate fixed at 9,600, 8	data bits, 1 stop bit, no pa	arity					
	Inputs (START, E-STOP, S-STOP)	3 p	hotocoupler inputs 24 \	/DC, Input resistance 5.4	kΩ					
	Outputs (MOVE, ALM, READY, END)	4	open-collector outputs	24 VDC, 25 mA Max. eac	h					
Input/Output Signal	General-purpose inputs	8 p	hotocoupler inputs 24 \	/DC, Input resistance 5.4	kΩ					
Specifications	General-purpose outputs	6	open-collector outputs	24 VDC, 25 mA Max. eac	h					
•	Driver and sensor inputs	7 (EMP401) / 1	4 (EMP402) photocou	pler inputs 12 VDC, input	resistance 2.7 kΩ					
	Driver outputs	3 (EMP401) /	· / !	llector outputs 12 VDC, 2	0 mA Max. each					
	Power requirement			nt Consumption 0.45 A						
General	Dimensions	W 1.57 ir	n. (40 mm) $ imes$ H 5.31 in.	(135 mm) \times D 3.94 in. (100 mm)					
Specifications	Weight			(0.26 kg)						
	Ambient temperature		· · · · · · · · · · · · · · · · · · ·	+50°C) (nonfreezing)						
	Ambient humidity		$20\%\sim85\%$ (noncondensing)						

^{✓ :} Available

× : Not Available

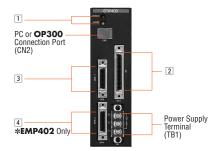
Dimensions Scale 1/4, Unit = inch (mm)

Weight: 0.57 lb. (0.26 kg)

AS AS PLUS ASC

CFKI

SS

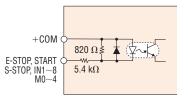

PMC

CSK

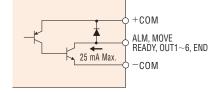
PK/PV

Connection and Operation

Connector Layout


1 LED Monitor Display

Indication	Condition when LED ON
POWER	Lights during 24 VDC input.
ALARM	Lights during alarm signal output.

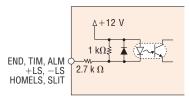

2 CN1 I/O Signal Connector

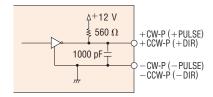
Pin No.	Signal	Description	Pin No.	Signal	Description					
1	_	Not used	26	_	Not used					
2	E-STOP Input	Emergency Stop	27	ALM Output	Alarm					
3	START Input	Execute Sequence Program	28	_	Not used					
4	S-STOP Input	Cease Sequence Execution	29	MOVE Output	Outputting Pulses					
5	_	Not used	30	_	Not used					
6	_	Not used	31	READY Output	Ready to accept START input					
7	+COM Input	I/O Power Supply (+24 VDC)	32	+COM Input	I/O Power Supply (+24V)					
8	IN1 Input		33	MO Input						
9	IN2 Input		34	M1 Input						
10	IN3 Input		35	M2 Input	Sequence Number Selection					
11	IN4 Input	General Inputs	36	M3 Input						
12	IN5 Input	General inputs	37	M4 Input						
13	IN6 Input		38	_	Not used					
14	IN7 Input		39	_	Not used					
15	IN8 Input		40	_	Not used					
16	+COM Input	I/O Power Supply (+24 VDC)	41	_	Not used					
17	OUT1 Output		42	_	Not used					
18	OUT2 Output		43	_	Not used					
19	OUT3 Output	General Outputs	44	_	Not used					
20	OUT4 Output	deneral Outputs	45	_	Not used					
21	OUT5 Output		46	_	Not used					
22	OUT6 Output		47	_	Not used					
23	_	Not used	48	_	Not used					
24		Not used	49	END Output	End Signal					
25	-COM Input	GND for I/O	50	-COM Input	GND for I/O					

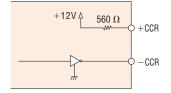
Internal Input Circuit

Internal Output Circuit

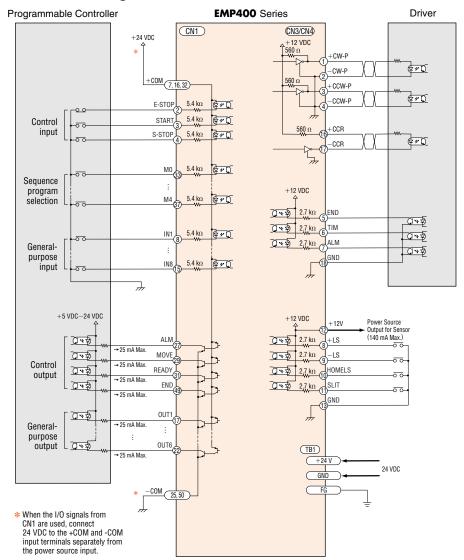
3 CN3 Axis-1 Driver Connector


4 CN4 Axis-2 Driver Connector


Pin No.	Signal	Description	Pin No.	Signal	Description
1	+CW-P output (+PULSE output) *	CW pulse (pulse) *	14	_	Not used
2	-CW-P output (-PULSE output) *	CVV puise (puise)	15	_	Not used
3	+CCW-P output (+DIR output) *	CCW pulse (Direction of rotation) *	16	+CCR output	- Counter-clear
4	-CCW-P output (-DIR output) *	birection of rotation)	17	-CCR output	- Gourner-clear
5	END input	END signal from driver	18	GND	GND signal from driver
6	TIM input	Timing signal from driver	19	_	Not used
7	ALM input	Alarm signal from driver	20	_	Not used
8	+LS input	CW limit sensor	21	_	Not used
9	-LS input	CCW limit sensor	22	_	Not used
10	HOMELS input	Home limit sensor	23	_	Not used
11	SLIT input	Slit sensor	24	_	Not used
12	+12 V output	Power source for sensor (140 mA max.)	25	+5 V output	Power source for timing signal (20 mA max.)
13	GND	GND for sensor	26	GND	GND for timing signal


^{*} The values in parentheses are for 1-pulse output mode. The other values are for 2-pulse output mode.

Internal Input Circuit


Internal Output Circuit

Connection Diagrams

S

AS PLUS

CFKI

SS

PMC

UMK

SS

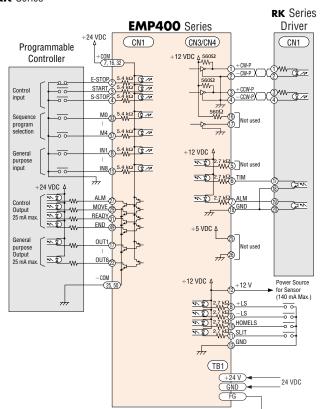
PK/PV

못

Connection Diagrams

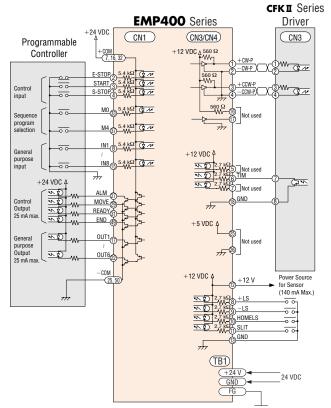
Aster AS Series **AS** Series **EMP400** Series Driver +24 VDC CN3/CN4 CN4 CN1 Programmable +12 VDC Δ 560 Ω Controller E-STOP START Contro input 9W - JAVE +12 VDC 4 purpose input +24 VDC 4 AI M ALM MOVE READY END 4 +5 VDC +5 V Genera Circuit +12 VDC +12 V Power Source (140 mA Max.) W D 5-LS HOMELS SLIT π

(TB1)


24 VDC

Note: The Pulse frequency will become lower as the signal lines becomes longer.

ASTEP **ASC** Series **ASC** Series **EMP400** Series Driver +24 VDC CN3/CN4 CN3 CN1 Programmable +12 VDC Δ 560 Ω Controller E-STOP START Control ∮W <u>\$~</u> Sequenc program IN1 8 5.4 kΩ (\$ Λν General +12 VDC 4 IN8 15.4 kΩ (2 Λν 2.7kg +24 VDC 4 Control 2.7 kΩ MOVE Output 25 mA m READY General OUT1 purpose Output 25 mA max OUT6 -COM +12 VDC Power Source for Sensor (140 mA Max.) N D N D _<u>LS</u> HOMELS SLIT (TB1) 24 VDC


Note: The Pulse frequency will become lower as the signal lines becomes longer.

RK Series

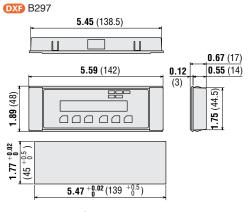
Note: The Pulse frequency will become lower as the signal lines becomes longer.

Nano Step CFK II Series

Note: The Pulse frequency will become lower as the signal lines becomes longer.

Accessories (sold separately)

Operator Interface Unit


Model: OP300

Set the travel amount via teaching or monitor the current position.

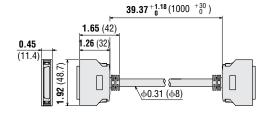
The unit comes with a cable 6.6 ft. (2 m) for connection with the EMP400 Series.

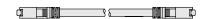
* A personal computer cannot be connected while the **OP300** is connected.

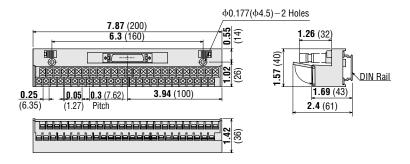
♦ Dimensions Scale 1/4, Unit = inch (mm)

Panel Cut-out Dimensions

I/O Cable with Terminal Block


Model: CC01EMP1T


The EMP400 Series, programmable controller, and I/O signals can all be connected via a terminal block.


Cable length: 3.3 ft. (1 m)

♦ Dimensions Scale 1/4, Unit = inch (mm)

DXF B300

									ck																						
Γ	2	6	27	28	2!	9 3	0	31	32	33	3	4 3	15	36	3	7 3	38	39	41	4	1 4	2	13	44	45	46	47	4	8	19	50
İ	1	2	T	3	4	5	6	T	1	3	9	10	11	1	2	13	1	1	5	16	17	18	19	2	0 2	1 2	2 2	23	24	2	5

Communication Cable

Input programs from a PC

Use this 16.4 ft. (5 m) communication cable to connect the EMP400 Series to a PC. (DSUB9F to RJ 11 cable)

쯧

CFKI

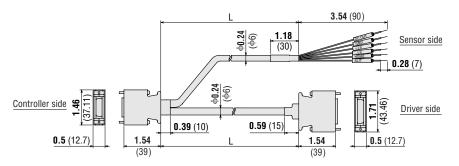
CSK

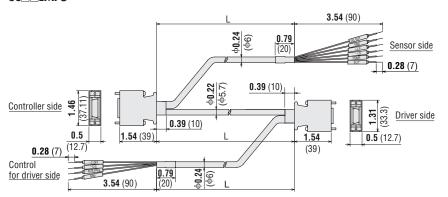
PMC

UMK

CSK

PK/PV PK


Driver Cables


Model	Length (L)	Applicable Product	Connector Number			
CC01EMP4	3.3 ft. (1 m)	AS, ASC Series				
CC02EMP4	6.6 ft. (2 m)	AS, ASC Series	CN3 & CN4			
CC01EMP5	3.3 ft. (1 m)	RK Series				
CC02EMP5	6.6 ft. (2 m)	RK Series				

◆ Dimensions Scale 1/4, Unit = inch (mm)

CC□□EMP4

• CC□□EMP5

RS232C-Compatible Controller

SC8800/SC8800E for Stepping Motor Systems

The **SC8800** and **SC8800E** controllers can be programmed from a computer or ASCII terminal via a standard RS-232C port.

Features

Easy-to-Use

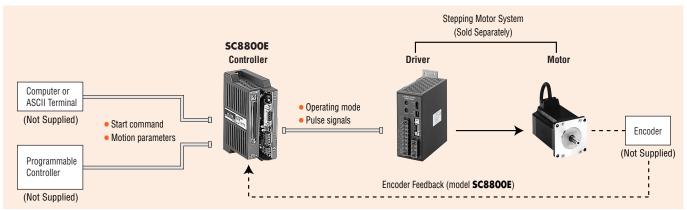
- The instruction set software is built into the controller. There is no need for set-up diskettes.
- Can be pre-programmed prior to installation.
- An easy-to-learn instruction set allows for complete system operation.
- End-of-travel and home positions can be easily determined by the three dedicated limit switch inputs.
- Operates on 10 to 28 VDC so the controller can be powered by a standard power supply.

Programming Options

- Can be controlled or programmed directly from a computer or ASCII terminal via a standard RS-232C port.
- Can be controlled by industry-standard programmable logic controllers so it can run off any already existing PLC.
- Linear, S-curve and parabolic acceleration/deceleration profiles are available.

Flexible I/O

- There are four programmable inputs and two programmable outputs to give the controller the ability to control other functions within the machine. All inputs and outputs are optically isolated.
- Step and direction signal outputs are industry standard TTL level signals in either 1-pulse or 2-pulse modes so the SC8800 and the SC8800E can be used with any industry-standard stepping motor and driver package.
- All I/Os can be driven by an external DC power supply of 5 to 24 VDC.


Encoder Feedback Capabilities (Model SC8800E)

 Nearly every known feedback device can be recognized since the controller can use two or three channels in either single-ended or differential modes.

Daisy-Chain Capabilities

- Up to 35 different axes can be controlled from one computer or ASCII terminal by daisy-chaining up to 35 **SC8800** or **SC8800E** controllers together.
- Available with an optional encoder input for position verification (model SC8800E).

System Configuration

CFKI

SS

PMC

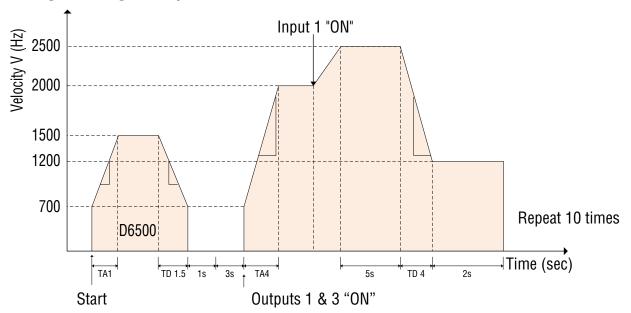
UMK

SS

PK/PV

못

UI2120G


AC Input DC Ir

AS PLUS

Specifications

Parameter Value Input Power 10~28 VDC, 3.0 watts max. Stepping Accuracy ±0 steps from preset total Velocity Accuracy ±0.05% of preset rate Velocity Repeatability $\pm 0.01\%$ of max. rate Performance Position Range 0 to $\pm 999,999,999$ steps, when DSCALE is active Velocity Range 1 to 800,000 steps/sec Acceleration Rate 0.001 to 10 sec Absolute Move to specified internal counter position Index Move specified distance Motion Types Continuous Move at specified speed until commanded to stop Go Home Move to Home limit switch Move Time Move specified distance in specified time Sequence may be executed from RS-232C interface with the RUN command Via RS-232C Sequence Execution Via Power-up Auto Run Execute any sequence, 0~15 upon power-up Via Programmable Input Sequences may be selected using an external device Programming Language Simple, high-level programming language 8k or up to available remaining memory Sequence Length Non-Volatile Memory Number of Programs 50 max. or up to available memory Command Interface Type RS-232C serial type, 3-wire implementation (Tx, Rx, Gnd) Parameters Baud rate fixed at 9600, 8 data bits, 1 stop bit, no parity Configuration 35 units max. can be controlled via a single port in the daisy-chain configuration CW, CCW and Home Limits +5 to +30 VDC, Optically Isolated Inputs Four to be used for machine interaction and/or sequence selection, +5 to +30 VDC, Optically Programmable Inputs Isolated TIM Phase zero indicator, +5 to +30 VDC, Optically Isolated Encoder Model **SC8800E** accepts 2 or 3 channel, 2-phase quadrature incremental encoders with differential or single ended outputs, 5 VDC TTL compatible, 400 kHz (quadrature), max. Step and Direction TTL, High: $4\sim5$ VDC, Low: $0\sim0.5$ VDC, Pulse width: 0.5 ms min., Rise/Fall time: 0.2 ms max. Outputs Programmable Two, Open collector, 1~24 VDC, 80 mA max. Status Fault & Busy, Open collector, 1~24 VDC, 80 mA max. Dimensions L 3.35 in. (85 mm) imes W 1.57 in. (40 mm) imes H 4.72 in. (120 mm) Mechanical I/O Connectors Combination of fixed screw terminal and D-type Cooling Method Natural Ventilation Environmental Ambient Temperature Range 32°F~122°F (0°C~+50°C) 20~ 85% (noncondensing) Humidity Weight 0.68 lb. (0.31 kg)

Programming Example

The two moves shown above can be executed with the following program commands :

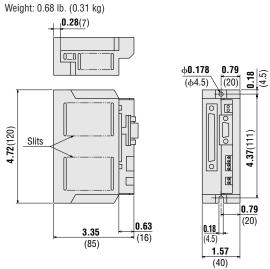
Com	nmands	Description		
1	LOOP 10	Loop this program 10 times		
2	SAS Push START to begin	Echo message to screen		
3	VS700; V1500	Set start and run velocities for the first move		
4	TA1; TD1.5	Set Accel time to 1 sec & Decel time to 1.5 sec		
When start signal is input, program begins				
5	PC0; EC0	Set position and encoder counters to zero		
6	H+	Set direction to CW		
7	D6500	Set distance to 6500 steps		
8	MI	Execute the Index move		
9	DELAY1	Delay 1 second		
10	IF (CP!=0)	If encoder position is incorrect,		
11	THEN JMP1	Then, restart program		
12	ELSE DELAY3	Else Delay 3 seconds.		
13	OUT=101	Turn on Outputs 1 and 3		
14	V2000	Set velocity to 2000 steps/sec		
15	T4	Set Accel & Decel time to 4 sec. for second move		
16	WHILE (IN1=0)	While Input #1 is off,		
17	MC	Move continuously		
18	ENDW	End the while loop		
19	V2500; MC	Change speed to 2500 steps/sec		
20	DELAY5	Delay 5 seconds		
21	V1200	Change speed to 1200 step/sec		
22	DELAY2	Delay 2 seconds		
23	STOP	Stop moving		
24	ENDL	Return to beginning of loop		

CFKI

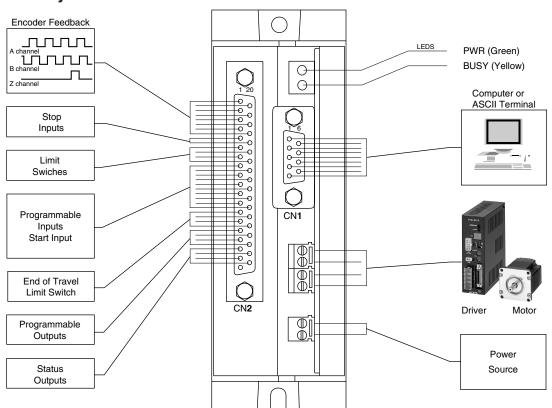
SS

PMC

UMK


CSK

PK/PV


PK

Dimensions Scale 1/4, Unit = inch (mm) SC8800

SC8800E

System Layout

Stepping Motor Controller

SG8030J

The **SG8030J** is a compact controller that switches between two control methods according to the application: sequential positioning and data selection positioning.

With sequential positioning mode, up to four positioning control operations can be executed in the pre-determined sequence by simply inputting the start command from a programmable controller. In data selection positioning mode, positioning is controlled by selecting one of four sets of pre-registered positioning data and inputting the start command from a programmable controller.

DIN Rail Mounting Model

Recessed Mounting Model

Features

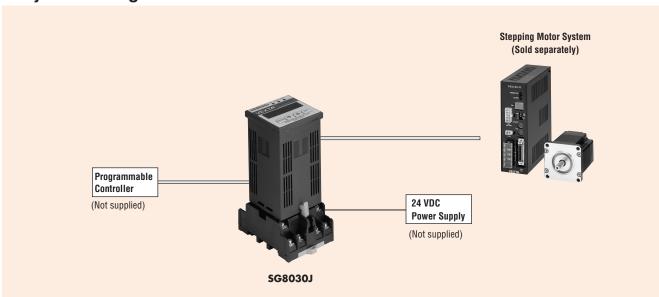
High Performance, Compact Size

With dimensions of 1.89 in. \times 1.89 in. \times 3.3 in. (48 mm \times 48 mm ×84 mm), the **SG8030J** is the smallest Oriental Motor controller. They come in DIN-rail-mount and panel mount versions.

High-Speed Positioning & Low Vibration

The jerk-limit control function allows you to set a shorter acceleration/deceleration time compared with the use of linear acceleration/deceleration patterns. This reduces the overall positioning time.

Switch Control Methods Easily


Switch control between sequential positioning and data selection positioning.

Functions

The **SG8030J** offers commonly used functions including:

- Control modes: External, program, test
- Operating modes: Positioning, return to mechanical home, continuous operation

System Configuration

PK/PV

못

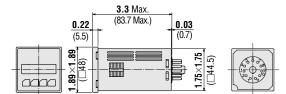
Product Line

Туре	Model
DIN Rail Mounting Model	SG8030J-D
Recessed Mounting Model	SG8030J-U

Specifications

Model		SG8030J-D SG8030J-U
Number of Control Axes		1 Axis
N	umber of Settings	4 Profiles
Positioning c	etting Mode	Set with touch key on front panel
Data	etting wode	(stored in EEPROM)
S	etting Method	Incremental Mode (point to point)
D.A.	lode	Sequential-Step Positioning
IVI	loue	Step-Select Positioning
Positioning M	love Distance Setting Range	Incremental 1~99999 Pulses
Control St	tarting Pulse Speed Setting Range (VS)	100 Hz~10 kHz (100 Hz Units)
0	perating Pulse Speed Setting Range (VR)	100 Hz~200 kHz (100 Hz Units)
Ac	cceleration/Deceleration Rate Setting Range (TR)	1~100 ms/kHz (28 rate*)
Pulse Output Mode		1-Pulse Output/2-Pulse Output Mode select possible
		Positioning Operation (INDEX Operation)
O M	l	Return to Mechanical Home Operation (HOME Operation)
Operation Mod	les	Continuous Operation (SCAN Operation)
		JOG Operation ★ Test mode only
		External Input Mode (EXT)
Control Modes		Program Mode (PROG)
Control Modes		Test Mode (TEST)
Machanical Ho	me Return Function	Sensor detection of home through designation of mechanical
Mechanical nome neturn function		home detection direction of rotation
Input Signals		24 VDC Photocoupler Input, Input Resistance 4.7 kΩ
Output Signals		Transistor Output Linked to Photocoupler
		24VDC 25 mA maximum
Power Supply Input		24 VDC±5% Current Consumption 0.1 A
Ambient Temperature		$32^{\circ}F \sim 104^{\circ}F (0^{\circ}C \sim +40^{\circ}C)$ (Nonfreezing)
Ambient Humidity		20%~85% (Noncondensing)

^{*} The following 28 acceleration/deceleration rates can be selected. (unit: ms/kHz) 1, 2, 4, 5, 6, 8, 10, 12, 14, 15, 16, 18, 20, 22, 24, 25, 26, 28, 30, 35, 40, 45, 50, 60, 70, 80, 90, 100

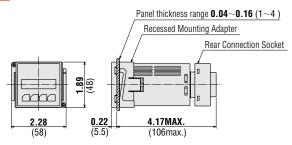

Dimensions Scale 1/4, Unit = inch (mm)

DIN Rail Mounting Model

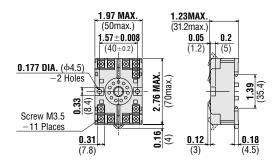
SG8030J-D

Weight: 0.37 lb. (0.17 kg)

DXF B094

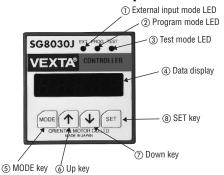


Recessed Mounting Model


SG8030J-U

Weight: 0.33 lb. (0.15 kg)

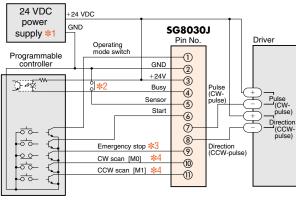
DXF B095


Flush Connection Socket (Included)

Panel Mounting Cut-Out Dimensions

Connection and Operation

1	EXT (LED): Lights up when external input is selected.	
2	PROG (LED): Lights up when program mode is selected.	
3	TEST (LED): Lights up when test mode is selected.	
4	Data display: Shows operation and setting status.	
(5)	MODE key	
6	↑ key	
7	↓ key	
8	SET key	
8	SET key	


Connection Socket Signal Table

Pin No.	Signal Designation	1/0	Function
1	Operation Mode Input	Input	S: Switching Positioning/Home Detection Operation D: Switching Positioning/Home Detection Operation and Continuous Operation
2	GND	Input	24 VDC Power Supply
3	+24 VDC	Input	
4	Busy	Output	Output during Pulse Oscillation
5	Sensor	Input	Mechanical Home Detection Sensor
6	Start	Input	Start Signal
7	CW Pulse/Pulse	Output	CW Pulse (2-pulse input mode)/Pulse (1-pulse input mode)
8	CCW Pulse/Rotation Direction	Output	CCW Pulse (2-pulse input mode)/Rotation Direction (1-pulse input mode)
9	Emergency Stop	Input	Stop all operations (including busy output)
10	S: CW Scan D: M0 [CW Scan]	Input	S: CW Continuous Operation D: Data Select Signal [CW Continuous Operation]
11	S: CCW Scan D: M1 [CCW Scan]	Input	S: CCW Continuous Operation D: Data Select Signal [CCW Continuous Operation]

Indications in brackets [] apply to state when mode switching signal was input.

- * Only pins 1, 10, 11 differ for sequential positioning and selection positioning.
 - "S" in the table indicates sequential positioning and "D" indicates selection positioning.

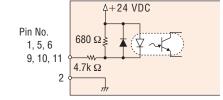
Connection Diagram

- *1 The pulse output section uses a constant-current circuit, so no external resistor is required.

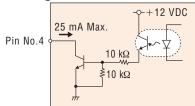
 Connect+5 V power directly to the driver +terminals and connect the 24 VDC and 5 VDC GND terminals to each other.
- *2 Use a 24 VDC home sensor.
- *3 This should be normally closed during normal operation.

When not using the emergency stop input signal, always connect to the +24 VDC terminal.

The "E.STOP" message is displayed when the power supply turns off.


*4 The names in brackets [] are for data selection positioning type.

Description of Input/Output Signals


Output Signals to Driver

Pin No. 7, 8 Photocoupler circuit TLP112 equivalent

♦ Input Signals from Programmable Controller and Limit Sensor

Output Signals to Programmable Controller

