INTEGRATED CIRCUITS

DATA SHEET

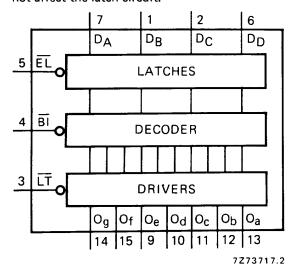
For a complete data sheet, please also download:

- The IC04 LOCMOS HE4000B Logic Family Specifications HEF, HEC
- The IC04 LOCMOS HE4000B Logic Package Outlines/Information HEF, HEC

HEF4511B MSI BCD to 7-segment latch/decoder/driver

Product specification
File under Integrated Circuits, IC04

January 1995



HEF4511B MSI

BCD TO 7-SEGMENT LATCH/DECODER/DRIVER

The HEF4511B is a BCD to 7-segment latch/decoder/driver with four address inputs (D_A to D_D), an active LOW latch enable input (\overline{EL}), an active LOW ripple blanking input (\overline{BI}), an active LOW lamp test input (\overline{LT}), and seven active HIGH n-p-n bipolar transistor segment outputs (O_a to O_q).

When \overline{EL} is LOW, the state of the segment outputs (O_a to O_g) is determined by the data on D_A to D_D . When \overline{EL} goes HIGH, the last data present on D_A to D_D are stored in the latches and the segment outputs remain stable. When \overline{LT} is LOW, all the segment outputs are HIGH independent of all other input conditions. With \overline{LT} HIGH, a LOW on \overline{BI} forces all segment outputs LOW. The inputs \overline{LT} and \overline{BI} do not affect the latch circuit.

16 15 14 13 12 11 10 9

V_{DD} O_f O_g O_a O_b O_c O_d O_e

HEF 4511 B

D_B D_C LT BI EL D_D D_A V_{SS}

1 2 3 4 5 6 7 8

7273716.1

Fig. 2 Pinning diagram.

HEF4511BP(N): 16-lead DIL; plastic (SOT38-1) HEF4511BD(F): 16-lead DIL; ceramic (cerdip) (SOT74) HEF4511BT(D): 16-lead SO; plastic (SOT109-1) (): Package Designator North America

Fig. 1 Functional diagram.

driver logic VOH

PINNING

 $\begin{array}{lll} D_A \text{ to } D_D & \text{address (data) inputs} \\ \hline{\text{EL}} & \text{latch enable input (active LOW)} \\ \hline{\text{BI}} & \text{ripple blanking input (active LOW)} \\ \hline{\text{LT}} & \text{lamp test input (active LOW)} \\ O_a \text{ to } O_g & \text{segment outputs} \end{array}$

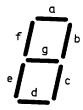


Fig. 4 Segment designation.

FAMILY DATA

| See Family Specifications | Family Spec

Fig. 3 Schematic diagram of output stage.

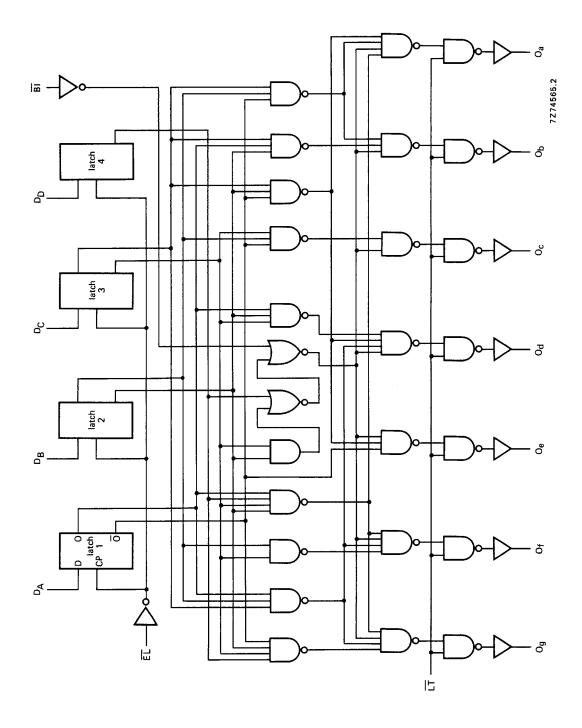


Fig. 5 Logic diagram; for one latch see Fig. 6.

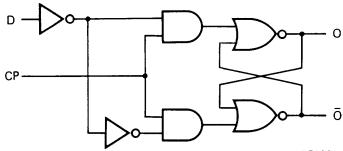


Fig. 6 Logic diagram (one latch); see also Fig. 5. 7279901

FUNCTION TABLE

inputs						outputs								
ĒL	BI	LT	DD	DC	DB	DA	Oa	O _b	Oc	O _d	O _e	Of	Og	display
X X L	X L H	L H	X X L	X X L	X X L	X X L	H L H	H L H	H L H	H L H	H L H	H L H	H L L	8 blank 0
L	н Н Н	 Н Н	L L	L L	H	H L H	L H H	H H H	H L H	L H H	L H L	L	L H	1 2 3
L	H H H	H H H	L L L	H H H	L H H	L H L	H L H	H L L	H H H	L H H L	L L H L	H H H L	H H H L	4 5 6 7
L L L	Н Н Н	H H H	H H H	L L L	L L H	L H L H	H H L	H H L L	H H L L	H L L	H L L	H H L	H H L	8 9 blank blank
L L	H H H	H H H	H H H	H H H	L L H H	L H L H	L L L	L L L	L L L	L L L	L L L	L L L	L L L	blank blank blank blank
Н	Н	Н	Х	Χ	Χ	Χ				*				*

H = HIGH state (the more positive voltage)

L = LOW state (the less positive voltage)

X = state is immaterial

^{*} Depends upon the BCD code applied during the LOW to HIGH transition of EL.

Fig. 7 Display.

HEF4511B MSI

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134).

Output (source) current HIGH

-I_{OH} max. 25 mA

For other RATINGS see Family Specifications.

Note

A destructive high current mode may occur if V_I and V_O are not constrained to the range $V_{SS} \leq V_I$ or $V_O \leq V_{DD}$.

D.C. CHARACTERISTICS

 $V_{SS} = 0 V$

HEF	V _{DD}	I _{OH}	symbol	T _{amb} (^o C) -40 + 25 + 85						
	•	III/A		min.	max.	min.	typ.	min.	max.	
Output voltage HIGH	5 10 15	0 0 0	Voн	4,10 9,10 14,10		4,10 9,10 14,10	4,40 9,40 14,40	4,10 9,10 14,10		> >
Output voltage HIGH	5 10 15	5 5 5	Voн				4,20 9,20 14,20			V V V
Output voltage HIGH	5 10 15	10 10 10	VoH	3,60 8,75 13,75		3,60 8,75 13,75	4,05 9,10 14,10	3,30 8,45 13,45		V V V
Output voltage HIGH	5 10 15	15 15 15	Vон				4,00 9,00 14,00			V V V
Output voltage HIGH	5 10 15	20 20 20	Voн	2,80 8,10 13,10		2,80 8,10 13,10	3,80 9,00 14,00	2,50 7,80 12,80		V V V
Output voltage HIGH	5 10 15	25 25 25	Voн				3,70 8,90 14,00			V V V

HEC	V _{DD}	IOH mA	symbol	55		T _{am} + 2	_b (°C) 25	+ 1:	25
		11174		min.	max.	min.	typ.	min.	max.
Output voltage	5	0		4,10		4,10	4,40	4,10	V
HIGH	10	0	Voн	9,10		9,10	9,90	9,10	V
	15	0		14,10		14,10	14,40	14,40	V
Output voltage	5	5					4,30		V
HIGH	10	5	Voн				9,30		V
	15	5					14,30		V
Output voltage	5	10		3,60		3,60	4,25	3,20	V
HIGH	10	10	Vон	8,75		8,75	9,25	8,35	V
	15	10		13,75		13,75	14,25	13,35	V

D.C. CHARACTERISTICS (continued)

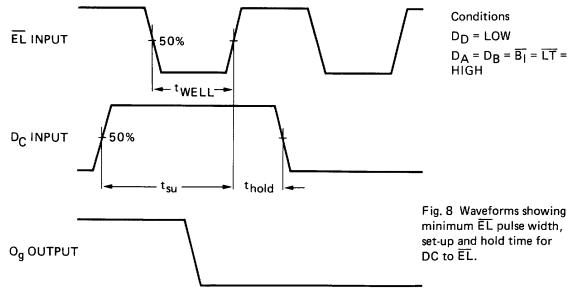
HEC	V _{DD}	IOH mA	symbol	–55 min.	max.	T _{amb} + 25 min.	(°C)	+12 min.	5 max.	
Output voltage HIGH	5 10 15	15 15 15	V _{OH}				4,20 9,20 14,20			V V V
Output voltage HIGH	5 10 15	20 20 20	Voн	2,80 8,10 13,10		2,80 8,10 13,10	4,20 9,20 14,20	2,30 7,60 12,60		V V V
Output voltage HIGH	5 10 15	25 25 25	Voн				4,15 9,20 14,20			V V V

A.C. CHARACTERISTICS

 $V_{SS} = 0 \text{ V}$; $T_{amb} = 25 \text{ }^{\circ}\text{C}$; input transition times $\leq 20 \text{ ns}$

	V _{DD}	typical formula for P (μW)	where f _i = input freq. (MHz)
Dynamic power dissipation per package (P)	5 10 15	$\begin{array}{c} 1000f_{i} + \Sigma(f_{o}C_{L}) \times V_{DD}^{2} \\ 4000f_{i} + \Sigma(f_{o}C_{L}) \times V_{DD}^{2} \\ 10000f_{i} + \Sigma(f_{o}C_{L}) \times V_{DD}^{2} \end{array}$	f_O = output freq. (MHz) C_L = load capacitance (pF) $\Sigma(f_OC_L)$ = sum of outputs V_{DD} = supply voltage (V)

A.C. CHARACTERISTICS


 V_{SS} = 0 V; T_{amb} = 25 °C; C_L = 50 pF; input transition times \leq 20 ns

	V _{DD}	symbol	min.	typ.	max.	typical extrapolation formula
Propagation delays D _n → O _n HIGH to LOW	5 10 15	[†] PHL		155 60 40	310 ns 120 ns 80 ns	128 ns + (0,55 ns/pF) C _L 49 ns + (0,23 ns/pF) C _L 32 ns + (0,16 ns/pF) C _L
LOW to HIGH	5 10 15	^t PLH		135 55 40	270 ns 110 ns 80 ns	108 ns + (0,55 ns/pF) C _L 44 ns + (0,23 ns/pF) C _L 32 ns + (0,16 ns/pF) C _L
EL → O _n HIGH to LOW	5 10 15	^t PHL		160 60 45	320 ns 120 ns 90 ns	133 ns + (0,55 ns/pF) C _L 49 ns + (0,23 ns/pF) C _L 37 ns + (0,16 ns/pF) C _L
LOW to HIGH	5 10 15	tPLH		160 70 50	320 ns 140 ns 100 ns	133 ns + (0,55 ns/pF) C _L 59 ns + (0,23 ns/pF) C _L 42 ns + (0,16 ns/pF) C _L
BI → O _n HIGH to LOW	5 10 15	tPHL		120 50 35	240 ns 100 ns 70 ns	93 ns + (0,55 ns/pF) C _L 39 ns + (0,23 ns/pF) C _L 27 ns + (0,16 ns/pF) C _L

HEF4511B MSI

A.C. CHARACTERISTICS (continued)

	V _{DD}	symbol	min.	typ.	max.	typical extrapolation formula
Propagation delays (cont.)						
BI → O _n	5			105	210 ns	78 ns + (0,55 ns/pF) C ₁
LOW to HIGH	10	tPLH		40	80 ns	29 ns + (0,23 ns/pF) C
	15	. =		30	60 ns	22 ns + (0,16 ns/pF) C
LT → O _n	5			80	160 ns	52 ns + (0,55 ns/pF) C ₁
HIGH to LOW	10	^t PHL		30	60 ns	19 ns + (0,23 ns/pF) C ₁
	15			20	40 ns	12 ns + (0,16 ns/pF) C
	5			60	120 ns	33 ns + (0,55 ns/pF) C ₁
LOW to HIGH	10	^t PLH		30	60 ns	19 ns + (0,23 ns/pF) C
	15			25	50 ns	17 ns + (0,16 ns/pF) C
Output transition						
times	5			60	120 ns	10 ns + (1,0 ns/pF) Cլ
HIGH to LOW	10	^t THL		30	60 ns	9 ns + (0,42 ns/pF) CL
	15			20	40 ns	6 ns + (0,28 ns/pF) C _L
	5			25	50 ns	20 ns + (0,1 na/Pf) CL
LOW to HIGH	10	^t TLH		16	32 ns	13 ns + (0,06 ns/pF) Cլ
_	15			13	26 ns	10 ns + (0,06 ns/pF) Cլ
Minimum EL	5		80	40	ns	
pulse width; LOW	10	tWELL.	40	20	ns	
	15		35	17	ns	
Set-up time	5		50	25	ns	see also waveforms
D _n → ĒL	10	t _{su}	25	12	ns	Fig. 8
	15		20	9	ns	' '9' '9'
Hold-time	5		60	30	ns	
D _n → EL	10	^t hold	30	15	ns	
	15		25	12	ns	,

APPLICATION INFORMATION

Some examples of applications for the HEF4511B are:

- Driving LED displays.
- Driving incandescent displays.
- Driving fluorescent displays.
- Driving LCD displays.
- Driving gas discharge displays.

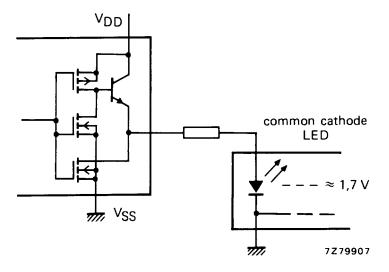


Fig. 9 Connection to common cathode LED display readout.

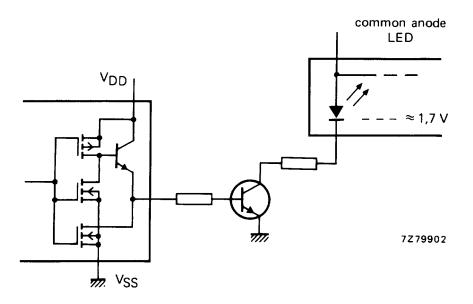


Fig. 10 Connection to common anode LED display readout.

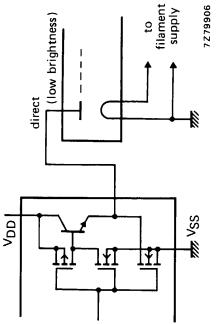


Fig. 12 Connection to fluorescent display readout.

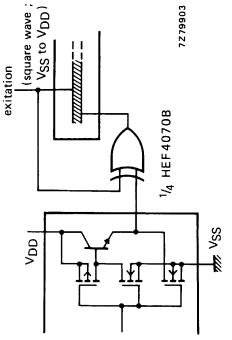
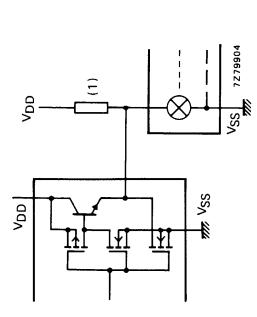



Fig. 14 Connection to liquid crystal (LCD) display readout. Direct d.c. drive of LCDs not recommended for life of LCD readouts.

7279905

Fig. 13 Connection to gas discharge display readout.

Vss

thermal shock and increase the effective cold resistance of the filament. appropriate voltage Fig. 11 Connection to incandescent display readout. Vpp

(1) A filament pre-warm resistor is recommended to reduce filament