INTEGRATED CIRCUITS

DATA SHEET

For a complete data sheet, please also download:

- The IC04 LOCMOS HE4000B Logic Family Specifications HEF, HEC
- The IC04 LOCMOS HE4000B Logic Package Outlines/Information HEF, HEC

HEF4521B MSI

24-stage frequency divider and oscillator

Product specification
File under Integrated Circuits, IC04

January 1995

24-STAGE FREQUENCY DIVIDER AND OSCILLATOR

The HEF4521B consists of a chain of 24 toggle flip-flops with an overriding asynchronous master reset input (MR), and an input circuit that allows three modes of operation. The single inverting stage ($1_2/O_2$) will function as a crystal oscillator, or in combination with 1_1 as an RC oscillator, or as an input buffer for an external oscillator. Low-power operation as a crystal oscillator is enabled by connecting external resistors to pins 3 (V_{SS}) and 5 (V_{DD}).

Each flip-flop divides the frequency of the previous flip-flop by two, consequently the HEF4521B will count up to $2^{24} = 16777216$. The counting advances on the HIGH to LOW transition of the clock (I₂). The outputs of the last seven stages are available for additional flexibility.

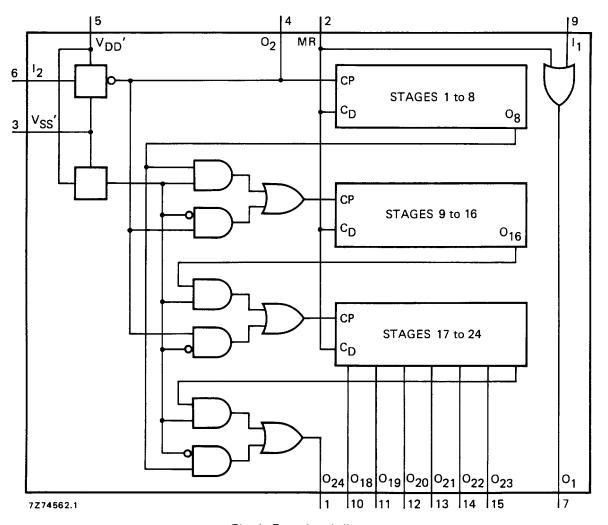
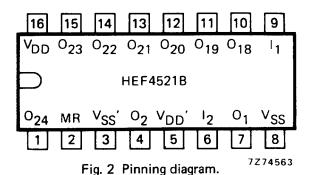


Fig. 1 Functional diagram.


FAMILY DATA

IDD LIMITS category MSI

see Family Specifications

24-stage frequency divider and oscillator

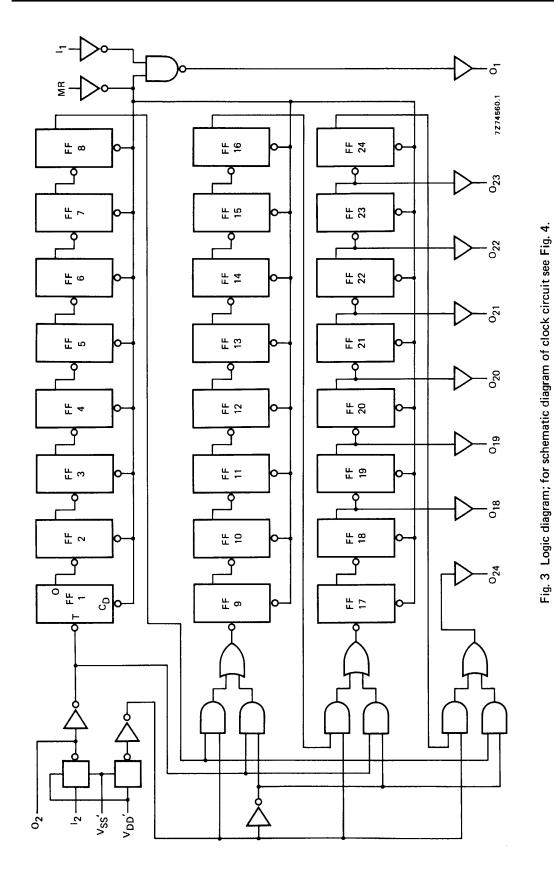
HEF4521B MSI

HEF4521BP(N): 16-lead DIL; plastic (SOT38-1)

HEF4521BD(F): 16-lead DIL; ceramic (cerdip) (SOT74)

HEF4521BT(D): 16-lead SO; plastic (SOT109-1)

(): Package Designator North America


COUNT CAPACITY

output	count capacity			
0 ₁₈	2 ¹⁸ = 262 144			
0 ₁₉	2 ¹⁹ = 524 288			
020	2 ²⁰ = 1 048 576			
021	$2^{21} = 2097152$			
022	2 ²² = 4 194 304			
023	$2^{23} = 8388608$			
024	2 ²⁴ = 16 777 216			

FUNCTIONAL TEST SEQUENCE

inp	puts control outputs		outputs	remarks		
MR	l ₂	02	V _{SS} ′	V _{DD} ′	O ₁₈ to O ₂₄	
Н	L	L	V _{DD}	V _{SS}	L	counter is in three 8-stage sections in parallel mode; I ₂ and O ₂ are interconnected (O ₂ is now input); counter is reset by MR
L	Л	Л	V _{DD}	V _{SS}	Н	255 pulses are clocked into I ₂ , O ₂ (the counter advances on the LOW to HIGH transition)
L	L	L	VSS	VSS	Н	VSS' is connected to VSS
L	Н	L	VSS	VSS	Н	the input I ₂ is made HIGH
L	н	Ĺ	V _{SS}	V _{DD}	н	V _{DD} ' is connected to V _{DD} ; O ₂ is now made floating and becomes an output; the device is now in the 2 ²⁴ mode
L	\		V _{SS}	V _{DD}	L	counter ripples from an all HIGH state to an all LOW state

A test function has been included for the reduction of the test time required to exercise all 24 counter stages. This test function divides the counter into three 8-stage sections by connecting VSS' to VDD and VDD' to VSS. Via I2 (connected to O2) 255 counts are loaded into each of the 8-stage sections in parallel. All flip-flops are now at a HIGH state. The counter is now returned to the normal 24-stage in series configuration by connecting VSS' to VSS and VDD' to VDD. One more pulse is entered into input I2, which will cause the counter to ripple from an all HIGH state to an all LOW state.

24-stage frequency divider and oscillator

HEF4521B MSI

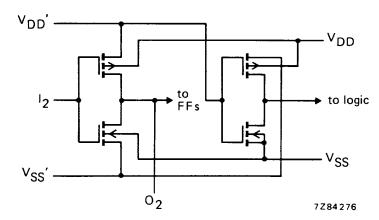


Fig. 4 Schematic diagram of clock input circuitry.

A.C. CHARACTERISTICS

 $V_{SS} = 0 \text{ V; } T_{amb} = 25 \text{ °C; } C_L = 50 \text{ pF; input transition times} \le 20 \text{ ns}$

	V _{DD} V	symbol	min.	typ.	max.	typical extrapolation formula
Propagation delays 12 → O ₁₈ HIGH to LOW	5 10 15	^t PHL		950 350 220	1900 ns 700 ns 440 ns	923 ns + (0,55 ns/pF) C _L 339 ns + (0,23 ns/pF) C _L 212 ns + (0,16 ns/pF) C _L
LOW to HIGH	5 10 15	tPLH		950 350 220	1900 ns 700 ns 440 ns	923 ns + (0,55 ns/pF) C _L 339 ns + (0,23 ns/pF) C _L 212 ns + (0,16 ns/pF) C _L
O _n → O _{n + 1} HIGH to LOW	5 10 15	^t PHL		40 15 10	80 ns 30 ns 20 ns	13 ns + (0,55 ns/pF) C _L 4 ns + (0,23 ns/pF) C _L 2 ns + (0,16 ns/pF) C _L
LOW to HIGH	5 10 15	^t PLH		40 15 10	80 ns 30 ns 20 ns	13 ns + (0,55 ns/pF) C _L 4 ns + (0,23 ns/pF) C _L 2 ns + (0,16 ns/pF) C _L
MR → O _n HIGH to LOW	5 10 15	t _{PHL}		120 55 40	240 ns 110 ns 80 ns	93 ns + (0,55 ns/pF) C _L 44 ns + (0,23 ns/pF) C _L 32 ns + (0,16 ns/pF) C _L
I ₁ → O ₁ HIGH to LOW	5 10 15	^t PHL		90 35 25	180 ns 70 ns 50 ns	63 ns + (0,55 ns/pF) C _L 24 ns + (0,23 ns/pF) C _L 17 ns + (0,16 ns/pF) C _L
LOW to HIGH	5 10 15	^t PLH		60 30 20	120 ns 60 ns 40 ns	33 ns + (0,55 ns/pF) C _L 19 ns + (0,23 ns/pF) C _L 12 ns + (0,16 ns/pF) C _L
Output transition times HIGH to LOW	5 10 15	^t THL		60 30 20	120 ns 60 ns 40 ns	10 ns + (1,0 ns/pF) Cլ 9 ns + (0,42 ns/pF) Cլ 6 ns + (0,28 ns/pF) Cլ
LOW to HIGH	5 10 15	^t TLH		60 30 20	120 ns 60 ns 40 ns	10 ns + (1,0 ns/pF) CL 9 ns + (0,42 ns/pF) CL 6 ns + (0,28 ns/pF) CL

A.C. CHARACTERISTICS

 $V_{SS} = 0 \text{ V}$; $T_{amb} = 25 \text{ }^{o}\text{C}$; $C_L = 50 \text{ pF}$; input transition times $\leq 20 \text{ ns}$

	V _{DD} V	symbol	min.	typ.	max.	
Minimum I ₂ pulse width; HIGH	5 10 15	^t WI2H	80 40 30	40 20 15	ns ns ns	
Minimum MR pulse width; HIGH	5 10 15	^t WMRH	70 40 30	35 20 15	ns ns ns	see also waveforms
Recovery time for MR	5 10 15	^t RMR	20 15 15	-10 -5 0	ns ns ns	Fig. 5
Maximum clock pulse frequency	5 10 15	f _{max}	6 12 17	12 25 35	MHz MHz MHz	

	V _{DD}	typical formula for P (μW)	where f _i = input freq. (MHz)
Dynamic power dissipation per package (P)	5 10 15	1 200 $f_i + \Sigma (f_0C_L) \times V_{DD}^2$ 5 100 $f_i + \Sigma (f_0C_L) \times V_{DD}^2$ 13 050 $f_i + \Sigma (f_0C_L) \times V_{DD}^2$	f_O = output freq. (MHz) C_L = load capacitance (pF) $\Sigma(f_OC_L)$ = sum of outputs V_{DD} = supply voltage (V)

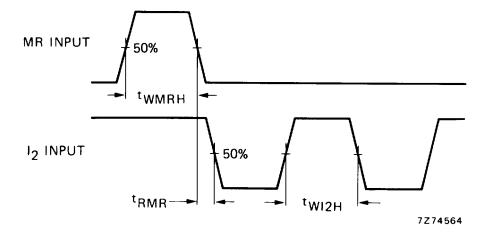
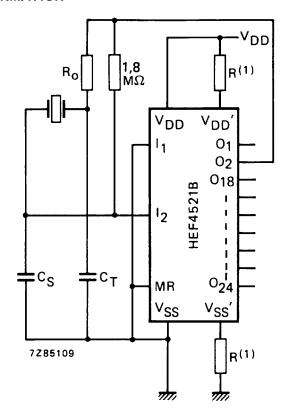



Fig. 5 Waveforms showing minimum pulse widths for MR and I2, recovery time for MR.

APPLICATION INFORMATION

(1) Optional for low power operation.

Fig. 6 Crystal oscillator circuit.

Typical characteristics for crystal oscillator circuit (Fig. 6):

	500 kHz circuit	50 kHz circuit	unit
Crystal characteristics resonance frequency crystal cut equivalent resistance; R _S	500	50	kHz
	S	N	–
	1	6,2	kΩ
External resistor/capacitor values R _O C _T C _S	47	750	kΩ
	82	82	pF
	20	20	pF

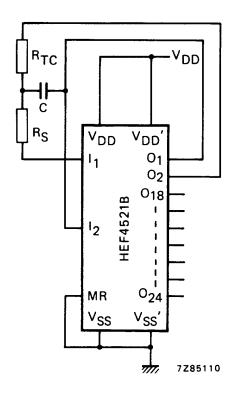
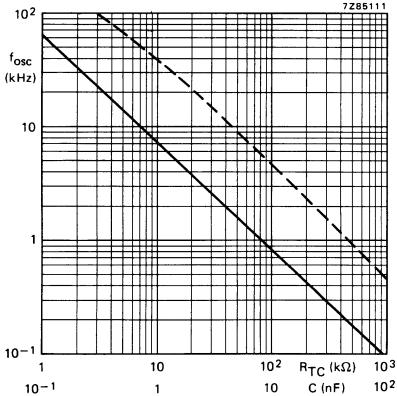



Fig. 7 RC oscillator circuit; $f \approx \frac{1}{2.3 \times R_{TC} \times C}; \; R_S \geqslant 2 \; R_{TC}, \; \text{in which:} \\ f \; \text{in Hz, R in } \Omega, C \; \text{in F.}$

$$R_{S} + R_{TC} < \frac{v_{IL\; max}}{I_{LI}} \quad \mbox{(maximum input voltage LOW)} \label{eq:RS} \mbox{(input leakage current)}$$

$$\begin{split} & - - - R_{TC}; C = 1 \text{ nF}; \\ & R_S \approx 2 \text{ R}_{TC} \\ & - C; R_{TC} = 56 \text{ k}\Omega; \\ & R_S = 120 \text{ k}\Omega \end{split}$$

Fig. 8 Oscillator frequency as a function of R_{TC} and C; $V_{DD} = 10$ V; test circuit is Fig. 7.

APPLICATION INFORMATION (continued)

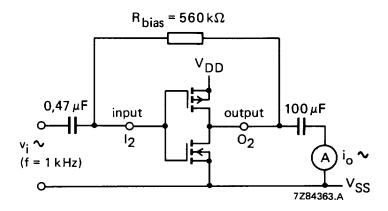


Fig. 9 Test set-up for measuring forward transconductance $g_{fs} = di_O/d_{vi}$ at v_O is constant (see also graph Fig. 10).

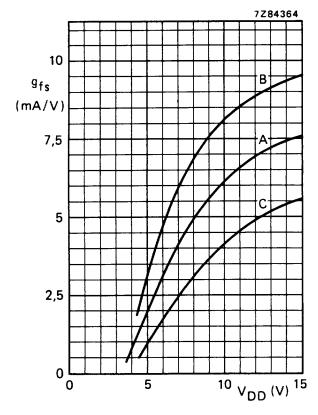
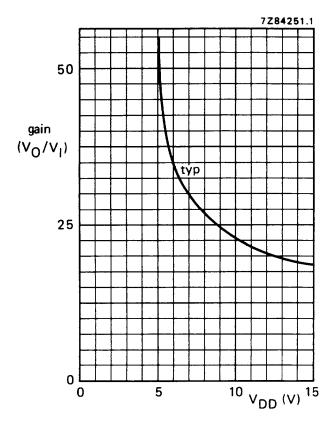


Fig. 10 Typical forward transconductance g_{fs} as a function of the supply voltage at T_{amb} = 25 °C.

Curves in Fig. 10:

A: average,


B: average + 2 s,

C: average -2 s, in which: 's' is the observed standard

deviation.

24-stage frequency divider and oscillator

HEF4521B MSI

7284257.1
20
1DD
(mA)
15
10
5
10
VDD (V) 15

Fig. 11 Voltage gain ($V_{\mbox{O}}/V_{\mbox{I}}$ as a function of supply voltage.

Fig. 12 Supply current as a function of supply voltage.

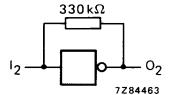


Fig. 13 Test set-up for measuring graphs of Figs 11 and 12.