
INTEGRATED CIRCUITS

HEF4027B flip-flops

DUAL JK FLIP-FLOP

The HEF4027B is a dual JK flip-flop which is edge-triggered and features indepedent set direct (S_D), clear direct (C_D), clock (CP) inputs and outputs (O, \overline{O}). Data is accepted when CP is LOW, and transferred to the output on the positive-going edge of the clock. The active HIGH asynchronous clear-direct (C_D) and set-direct (S_D) are independent and override the J, K, and CP inputs. The outputs are buffered for best system performance. Schmitt-trigger action in the clock input makes the circuit highly tolerant to slower clock rise and fall times.

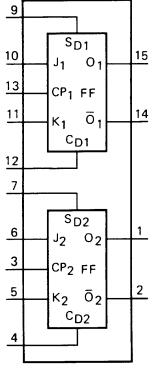
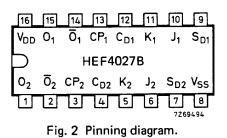



Fig. 1 Functional diagram.

FAMILY DATA

IDD LIMITS category FLIP-FLOPS

FUNCTION TABLES

	ir	out	puts			
SD	CD	СР	J	к	0	ō
н	L	X	х	х	н	L
L	н	X	X	X	L	н
н	н	X	X	X	н	н

	i	nput	outputs				
SD	CD	СР	J	к	0 _{n + 1}	\overline{O}_{n+1}	
L	L	Γ	L	L	no change		
L	L] /	н	L	H	L	
L	L	5	L	Н	L	н	
L	L	5	н	н	ōn	0 _n	

H = HIGH state (the more positive voltage)

L = LOW state (the less positive voltage)

X = state is immaterial

 \int = positive-going transition

 $O_{n + 1}$ = state after clock positive transition

PINNING

- J,K synchronous inputs
- CP clock input (L to H edge-triggered)
- SD asynchronous set-direct input (active HIGH)
- CD asynchronous clear-direct input (active HIGH)
- O true output
- O complement output

HEF4027BP(N): 16-lead DIL; plastic (SOT38-1) HEF4027BD(F): 16-lead DIL; ceramic (cerdip) (SOT74) HEF4027BT(D): 16-lead SO; plastic (SOT109-1) (): Package Designator North America

see Family Specifications

HEF4027B flip-flops

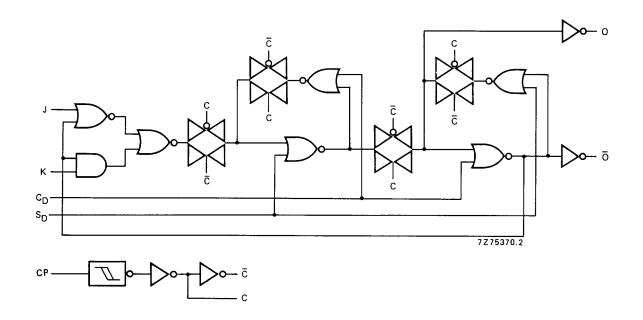


Fig. 3 Logic diagram (one flip-flop).

HEF4027B flip-flops

A.C. CHARACTERISTICS

 V_{SS} = 0 V; T_{amb} = 25 °C; C_L = 50 pF; input transition times \leq 20 ns

	V _{DD} V	symbol	min.	typ.	max.		typical extrapolation formula
Propagation delays CP ─► O, Ō HIGH to LOW	5 10 15	^t PHL		105 40 30	210 80 60	ns ns ns	78 ns + (0,55 ns/pF) CL 29 ns + (0,23 ns/pF) CL 22 ns + (0,16 ns/pF) CL
LOW to HIGH	5 10 15	^t PLH		85 35 30	170 70 60	ns ns ns	58 ns + (0,55 ns/pF) CL 27 ns + (0,23 ns/pF) CL 22 ns + (0,16 ns/pF) CL
S _D → O LOW to HIGH	5 10 15	^t PLH		70 30 25	140 60 50	ns ns ns	43 ns + (0,55 ns/pF) C _L 19 ns + (0,23 ns/pF) C _L 17 ns + (0,16 ns/pF) C _L
C _D → O HIGH to LOW	5 10 15	tphl		120 45 35	240 90 70	ns ns ns	93 ns + (0,55 ns/pF) CL 33 ns + (0,23 ns/pF) CL 27 ns + (0,16 ns/pF) CL
S _D → Ō HIGH to LOW	5 10 15	^t PHL		140 55 40	280 110 80	ns ns ns	113 ns + (0,55 ns/pF) C _L 44 ns + (0,23 ns/pF) C _L 32 ns + (0,16 ns/pF) C _L
C _D → Ō LOW to HIGH	5 10 15	^t PLH		75 35 25	150 70 50	ns ns ns	48 ns + (0,55 ns/pF) C _L 24 ns + (0,23 ns/pF) C _L 17 ns + (0,16 ns/pF) C _L
Output transition times HIGH to LOW	5 10 15	^t THL		60 30 20	120 60 40	ns ns ns	10 ns + (1,0 ns/pF)C _L 9 ns + (0,42 ns/pF)C _L 6 ns + (0,28 ns/pF)C _L
LOW to HIGH	5 10 15	^t TLH		60 30 20	120 60 40	ns ns ns	10 ns + (1,0 ns/pF)CL 9 ns + (0,42 ns/pF)CL 6 ns + (0,28 ns/pF)CL
Set-up time J, K ─► CP	5 10 15	t _{su}	50 30 20	25 10 5		ns ns ns	
Hold time J, K ─► CP	5 10 15	^t hold	25 20 15	0 0 5		ns ns ns	
Minimum clock pulse width; LOW	5 10 15	tWCPL	80 30 24	40 15 12		ns ns ns	see also waveforms Figs 4 and 5
Minimum S _D , C _D pulse width; HIGH	5 10 15	^t WSDH∕ ^t WCDH	90 40 30	45 20 15		ns ns ns	
Recovery time for S _D , C _D	5 10 15	^t RSD, ^t RCD	20 15 10	-15 -10 -5		ns ns ns	

HEF4027B flip-flops

A.C. CHARACTERISTICS

 V_{SS} = 0 V; T_{amb} = 25 °C; C_L = 50 pF; input transition times \leq 20 ns

	V _{DD} V	symbol	min	typ	max	
Maximum clock pulse frequency J = K = HIGH	5 10 15	f _{max}	4 12 15	8 25 30	MHz MHz MHz	see also waveforms Fig. 4

	V _{DD} V	typical formula for P (μ W)	where f _i = input freq. (MHz)
Dynamic power dissipation per package (P)	5 10 15	$\begin{array}{r} 900 \; f_{i} + \; \Sigma(f_{0}C_{L}) \; \times \; V_{DD}^{2} \\ 4 \; 500 \; f_{i} + \; \Sigma(f_{0}C_{L}) \; \times \; V_{DD}^{2} \\ 13 \; 200 \; f_{i} + \; \Sigma(f_{0}C_{L}) \; \times \; V_{DD}^{2} \end{array}$	f_0 = output freq. (MHz) C_L = load capacitance (pF) $\Sigma(f_0C_L)$ = sum of outputs V_{DD} = supply voltage (V)

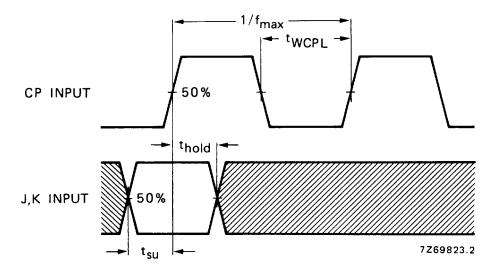


Fig. 4 Waveforms showing set-up times, hold times and minimum clock pulse width. Set-up and hold times are shown as positive values but may be specified as negative values.

HEF4027B flip-flops



Fig. 5 Waveforms showing recovery times for SD and CD; minimum SD and CD pulse widths.

APPLICATION INFORMATION

Some examples of applications for the HEF4027B are:

- Registers
- Counters
- Control circuits