
SG2525A/2527A SG3525A/3527A

REGULATING PULSE WIDTH MODULATORS

- 8 TO 35 V OPERATION
- 5.1 V REFERENCE TRIMMED TO ± 1 %
- 100 Hz TO 500 KHz OSCILLATOR RANGE
- SEPARATE OSCILLATOR SYNC TERMINAL
- ADJUSTABLE DEADTIME CONTROL
- INTERNAL SOFT-START
- PULSE-BY-PULSE SHUTDOWN
- INPUT UNDERVOLTAGE LOCKOUT WITH HYSTERESIS
- LATCHING PWM TO PREVENT MULTIPLE PULSES
- DUAL SOURCE/SINK OUTPUT DRIVERS

DESCRIPTION

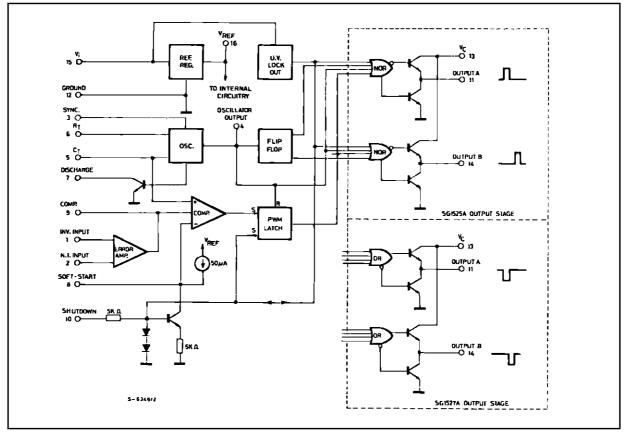
The SG3525A/3527A series of pulse width modulator integrated circuits are designed to offer improved performance and lowered external parts count when used in designing all types of switching power supplies. The on-chip + 5.1 V reference is trimmed to \pm 1 % and the input common-mode range of the error amplifier includes the reference voltage eliminating external resistors. A sync input to the oscillator allows multiple units to be slaved or a single unit to be synchronized to an external system clock. A single resistor between the C_T and the discharge terminals provide a wide range of dead time ad- justment. These devices also feature built-in soft-start circuitry with only an external timing capacitor required. A shutdown terminal controls both the soft-start circuity and the output stages, providing instantaneous turn off through the PWM latch with pulsed shut-

down, as well as soft-start recycle with longer shutdown commands. These functions are also controlled by an undervoltage lockout which keeps the outputs off and the soft-start capacitor discharged for sub-normal input voltages. This lockout circuitry includes approximately 500 mV of hysteresis for jitterfree operation. Another feature of these PWM circuits is a latch following the comparator. Once a PWM pulses has been terminated for any reason, the outputs will remain off for the duration of the period. The latch is reset with each clock pulse. The output stages are totem-pole designs capable of sourcing or sinking in excess of 200 mA. The SG3525A output stage features NOR logic, giving a LOW output for an OFF state. The SG3527A utilizes OR logic which results in a HIGH output level when OFF.

PIN CONNECTIONS AND ORDERING NUMBERS (top view)

INV. INPUT	(¹)	16	VREF			
N.I.INPUT	2	15	* ^V i	Туре	Plastic DIP	SO16
SYNC	3	14	OUTPUT B	SG2525A	SG2525AN	SG2525AP
OSC. OUTPUT	4	13	۷ _c	SG2527A	SG2527AN	SG2527AP
с _т	[]5]	12	GROUND	SG3525A	SG3525AN	SG3525AP
RT	6	11	OUTPUT A	SG3527A	SG3527AN	SG3527AP
DISCHARGE	Q 7	10	SHUTDOWN			
SOFT - START	[⁸	9	COMP			
		5-6414				

ABSOLUTE MAXIMUM RATINGS


Symbol	Parameter	Value	Unit
Vi	Supply Voltage	40	V
Vc	Collector Supply Voltage	40	V
losc	Oscillator Charging Current	5	mA
lo	Output Current, Source or Sink	500	mA
l _R	Reference Output Current	50	mA
Ιτ	Current through C _T Terminal Logic Inputs Analog Inputs	5 – 0.3 to + 5.5 – 0.3 to V _i	mA V V
Ptot	Total Power Dissipation at Tamb = 70 °C	1000	mW
Tj	Junction Temperature Range	– 55 to 150	°C
T _{stg}	Storage Temperature Range	– 65 to 150	О°
T _{op}	Operating Ambient Temperature : SG2525A/27A SG3525A/27A	— 25 to 85 0 to 70	°C ℃

THERMAL DATA

Symbol	Parameter		SO16	DIP16	Unit
Rth j-pins	Thermal Resistance Junction-pins Thermal Resistance Junction-ambient	Max Max		50 80	°C/W °C/W
R _{th j-amb} R _{th j-alumina}	Thermal Resistance Junction-alumina (*)	Max	50	80	°C/W

* Thermal resistance junction-alumina with the device soldered on the middle of an alumina supporting substrate measuring 15× 20 mm; 0.65 mm thickness with infinite heatsink.

BLOCK DIAGRAM

SGS-THOMSON MICROELECTRONICS

2/12

ELECTRICAL CHARACTERISTICS

(V# i = 20 V, and over operating temperature, unless otherwise specified)

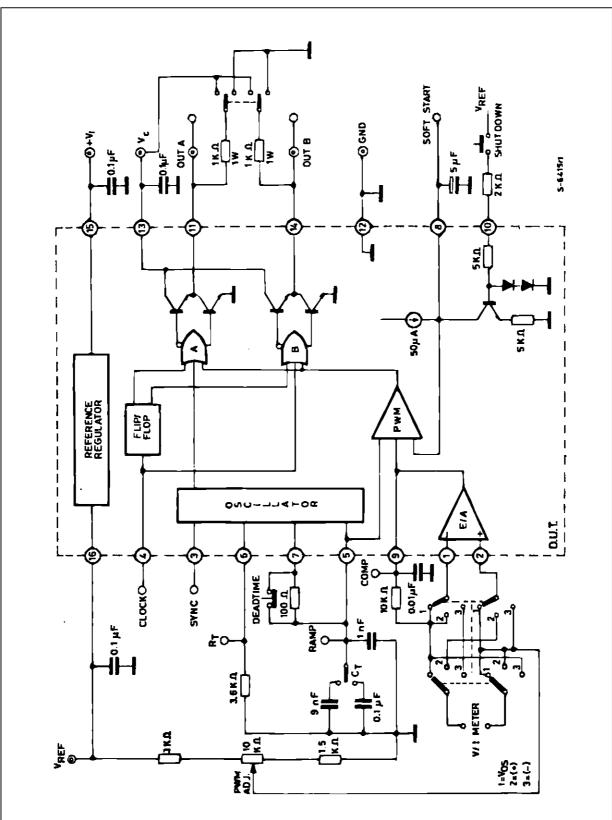
Symbol	Parameter	Test Conditions	SG2525A SG2527A			SG3525A SG3527A			Unit
-			Min.	Тур.	Max.	Min.	Тур.	Max.	1
REFEREN	CE SECTION								
V _{REF}	Output Voltage	T _j = 25 °C	5.05	5.1	5.15	5	5.1	5.2	V
ΔV_{REF}	Line Regulation	V _i = 8 to 35 V		10	20		10	20	mV
ΔV_{REF}	Load Regulation	$I_{L} = 0$ to 20 mA		20	50		20	50	mV
$\Delta V_{REF} / \Delta T^*$	Temp. Stability	Over Operating Range		20	50		20	50	mV
*	Total Output Variation	Line, Load and Temperature	5		5.2	4.95		5.25	V
	Short Circuit Current	V _{REF} = 0 T _j = 25 °C		80	100		80	100	mA
*	Output Noise Voltage	10 Hz ≤f ≤ 10 kHz, T _j = 25 °C		40	200		40	200	μVrms
ΔV_{REF}^{*}	Long Term Stability	$T_j = 125 \ ^{\circ}C, \ 1000 \ hrs$		20	50		20	50	mV
OSCILLAT	FOR SECTION * *								
*, ●	Initial Accuracy $T_j = 25 \ ^{\circ}C$			± 2	± 6		± 2	± 6	%
*, ●	Voltage Stability	$V_i = 8 \text{ to } 35 \text{ V}$		± 0.3	± 1		± 1	± 2	%
$\Delta f / \Delta T^*$	Temperature Stability	Over Operating Range		± 3	± 6		± 3	± 6	%
f _{MIN}	Minimum Frequency	$R_T = 200 \text{ K}\Omega \text{ C}_T = 0.1 \ \mu\text{F}$			120			120	Hz
f _{MAX}	$_{X}$ Maximum Frequency $R_{T} = 2 \text{ K}\Omega \text{ C}_{T} = 470 \text{ pF}$		400			400			KHz
	Current Mirror I _{RT} = 2 mA		1.7	2	2.2	1.7	2	2.2	mA
*, ●	Clock Amplitude		3	3.5		3	3.5		V
*, ●	, • Clock Width $T_j = 25 °C$		0.3	0.5	1	0.3	0.5	1	μs
Sync Threshold			1.2	2	2.8	1.2	2	2.8	V
Sync Input Current Sync Volta		Sync Voltage = 3.5 V		1	2.5		1	2.5	mA
ERROR A	MPLIFIER SECTION (VCN	n = 5.1 V)							
Vos	Input Offset Voltage			0.5	5		2	10	mV
lb	Input Bias Current			1	10		1	10	μA
l _{os}	Input Offset Current				1			1	μA
	DC Open Loop Gain	$R_L \ge 10 M\Omega$	60	75		60	75		dB
*	Gain Bandwidth Product	$G_v = 0 \text{ dB}$ $T_j = 25 \text{ °C}$	1	2		1	2		MHz
*, ¿	DC Transconduct.	$\begin{array}{l} 30 \ K\Omega \leq R_L \leq 1 \ M\Omega \\ T_j = 25 \ ^\circ C \end{array} \end{array} \label{eq:KO}$	1.1	1.5		1.1	1.5		ms
	Output Low Level			0.2	0.5		0.2	0.5	V
	Output High Level		3.8	5.6		3.8	5.6		V
CMR	Comm. Mode Reject.	V _{CM} = 1.5 to 5.2 V	60	75		60	75		dB
PSR	Supply Voltage Rejection	$V_i = 8 \text{ to } 35 \text{ V}$	50	60		50	60		dB

SG2525A/27A-SG3525A/27A

ELECTRICAL CHARACTERISTICS (continued)

PWM COMPARATOR Image: Main of the stress of t	Minimum Duty-cycle Maximum Duty-cycle Input Threshold Input Bias Current N SECTION Soft Start Current	Maximum Duty-cycle	45	49 0.9 3.3	0	45	49	Max. 0	% % V
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Minimum Duty-cycle Maximum Duty-cycle Input Threshold Input Bias Current N SECTION Soft Start Current	Maximum Duty-cycle		0.9	3.6		0.9	0	%
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Maximum Duty-cycle Input Threshold Input Bias Current N SECTION Soft Start Current	Maximum Duty-cycle		0.9	3.6		0.9	0	%
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Input Threshold Input Bias Current N SECTION Soft Start Current	Maximum Duty-cycle		0.9			0.9		, .
Maximum Duty-cycle 3.3 3.6 3.3 * Input Bias Current 0.05 1 0.05 SHUTDOWN SECTION Section Soft Start Current $V_{SD} = 0 V, V_{SS} = 0 V$ 25 50 80 25 50 Soft Start Low Level $V_{SD} = 2.5 V$ 0.4 0.7 0.4 Shutdown Threshold To outputs, $V_{SS} = 5.1 V$ 0.6 0.8 1 0.6 0.8 Shutdown Input Current $V_{SD} = 2.5 V$ 0.4 1 0.4 0.4 * Shutdown Input Current $V_{SD} = 2.5 V$ 0.4 1 0.4 * Shutdown Delay $V_{SD} = 2.5 V$ 0.4 1 0.4 * Shutdown Delay $V_{SD} = 2.5 V T_j = 25 °C$ 0.2 0.5 0.2 OUTPUT DRIVERS (each output) ($V_C = 20 V$) 0.2 0.4 0.2 1 $I_{sink} = 100 mA$ 1 2 1 1	nput Bias Current N SECTION Soft Start Current	Maximum Duty-cycle	0.7	3.3		0.7			V
* Input Bias Current $V_{SD} = 0$ $V_{SS} = 0$ 0.05 1 0.05 SHUTDOWN SECTION Soft Start Current $V_{SD} = 0$ $V_{SS} = 0$ 25 50 80 25 50 Soft Start Low Level $V_{SD} = 2.5$ V 0.4 0.7 0.4 Shutdown Threshold To outputs, $V_{SS} = 5.1$ V 0.6 0.8 1 0.6 0.8 Shutdown Input Current $V_{SD} = 2.5$ V 0.4 1 0.4 * Shutdown Delay $V_{SD} = 2.5$ V 0.4 1 0.4 * Shutdown Delay $V_{SD} = 2.5$ V 0.4 1 0.4 * Shutdown Delay $V_{SD} = 2.5$ V 0.4 1 0.2 0.2 OUTPUT DRIVERS (each output) (V_C = 20 V) 0.2 0.4 0.2 0.4 0.2 1 2 1 0 output Low Level $I_{sink} = 100$ mA 1 2 1	N SECTION Soft Start Current						3.3		
Shuthown Section V_{SD} = 0 V, V_{SS} = 0 V 25 50 80 25 50 Soft Start Current V_{SD} = 0 V, V_{SS} = 0 V 25 50 80 25 50 Soft Start Low Level V_{SD} = 2.5 V 0.4 0.7 0.4 Shutdown Threshold To outputs, V_{SS} = 5.1 V 0.6 0.8 1 0.6 0.8 Shutdown Input Current V_{SD} = 2.5 V 0.4 1 0.4 4 * Shutdown Delay V_{SD} = 2.5 V T_j = 25 °C 0.2 0.5 0.2 OUTPUT DRIVERS (each output) (V _C = 20 V) Output Low Level I_{sink} = 20 mA 0.2 0.4 0.2 I_{sink} = 100 mA 1 2 1	N SECTION Soft Start Current			0.05	1			3.6	V
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Soft Start Current				1		0.05	1	μA
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$									
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		$V_{SD} = 0 V, V_{SS} = 0 V$	25	50	80	25	50	80	μA
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Soft Start Low Level	el V _{SD} = 2.5 V		0.4	0.7		0.4	0.7	V
* Shutdown Delay $V_{SD} = 2.5 \ V T_j = 25 \ ^{\circ}C$ 0.2 0.5 0.2 OUTPUT DRIVERS (each output) (V_C = 20 V) V	Shutdown Threshold		0.6	0.8	1	0.6	0.8	1	V
OUTPUT DRIVERS (each output) (V _C = 20 V) 0.2 0.3 0.2 Output Low Level $I_{sink} = 20 \text{ mA}$ 0.2 0.4 0.2 $I_{sink} = 100 \text{ mA}$ 1 2 1	Shutdown Input Curre	nt $V_{SD} = 2.5 V$		0.4	1		0.4	1	mA
Output Low Level Isink = 20 mA 0.2 0.4 0.2 Isink = 100 mA 1 2 1	Shutdown Delay	V_{SD} = 2.5 V T _j = 25 °C		0.2	0.5		0.2	0.5	μs
l _{sink} = 100 mA 1 2 1	RIVERS (each output) (V _C = 20 V)							
	Output Low Level	I _{sink} = 20 mA		0.2	0.4		0.2	0.4	V
Output High Level $1000000000000000000000000000000000000$		I _{sink} = 100 mA		1	2		1	2	V
	Output High Level	I _{source} = 20 mA	18	19		18	19		V
I _{source} = 100 mA 17 18 17 18		I _{source} = 100 mA	17	18		17	18		V
Under-Voltage Lockout V_{comp} and V_{ss} = High67867	Under-Voltage Lockou	V_{comp} and $V_{ss} =$ High	6	7	8	6	7	8	V
I_C Collector Leakage $V_C = 35 V$ 200	Collector Leakage	V _C = 35 V			200			200	μA
t_r^* Rise Time $C_L = 1 \text{ nF}, T_j = 25 \text{ °C}$ 100 600 100	Rise Time	C _L = 1 nF, T _j = 25 °C		100	600		100	600	ns
t_{f}^{*} Fall Time $C_{L} = 1 \text{ nF}, T_{j} = 25 \text{ °C}$ 50 300 50	Fall Time	$C_L = 1 \text{ nF}, T_j = 25 ^{\circ}\text{C}$		50	300		50	300	ns
TOTAL STANDBY CURRENT	NDBY CURRENT								
I _s Supply Current V _i = 35 V 14 20 14	Supply Current	V _i = 35 V		14	20		14	20	mA

* These parameters, although guaranteed over the recommended operating conditions, are not 100 % tested in production.


• Tested at f_{osc} = 40 KHz (R_T = 3.6 K Ω , C_T = 0.1 μ F, R_D = 0 Ω). Approximate oscillator frequency is defined by :

$$f = \frac{1}{C_{T}(0.7 R_{T} + 3 R_{D})}$$

DC transconductance (g_M) relates to DC open-loop voltage gain (G_v) according to the following equation : $G_v = g_M R_L$ where R_L is the resistance from pin 9 to ground. The minimum g_M specification is used to calculate minimum G_v when the error amplifier output is loaded.

TEST CIRCUIT

RECOMMENDED OPERATING CONDITIONS (•)

Parameter	Value
Input Voltage (Vi)	8 to 35 V
Collector Supply Voltage (V _C)	4.5 to 35 V
Sink/Source Load Current (steady state)	0 to 100 mA
Sink/Source Load Current (peak)	0 to 400 mA
Reference Load Current	0 to 20 mA
Oscillator Frequency Range	100 Hz to 400 KHz
Oscillator Timing Resistor	2 KΩ to 150 KΩ
Oscillator Timing Capacitor	0.001 μF to 0.1 μF
Dead Time Resistor Range	0 to 500 Ω

(.) Range over which the device is functional and parameter limits are guaranteed.

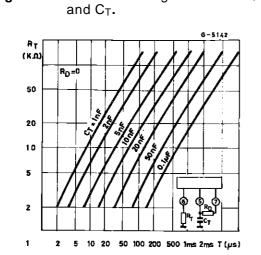
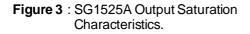



Figure 1 : Oscillator Charge Time vs. RT

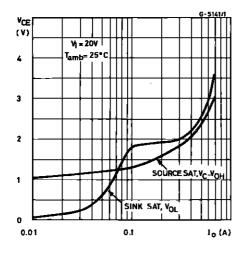


Figure 2 : Oscillator Discharge Time vs. R_D and C_T .

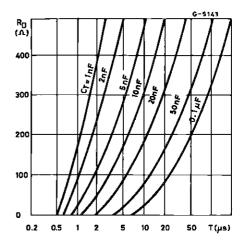
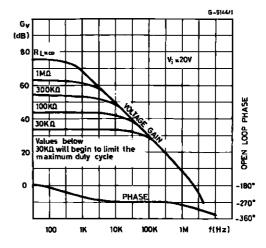
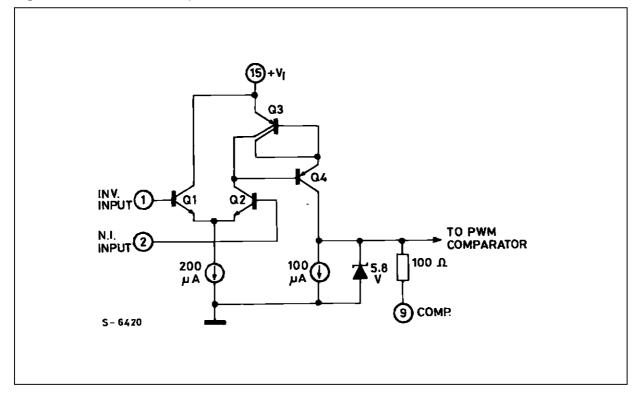



Figure 4 : Error Amplifier Voltage Gain and Phase vs. Frequency.


SGS-THOMSON

FLECTRONICS

<u>ل</u>حک

6/12

Figure 5 : SG1525A Error Amplifier.

PRINCIPLES OF OPERATION

SHUTDOWN OPTIONS (see Block Diagram)

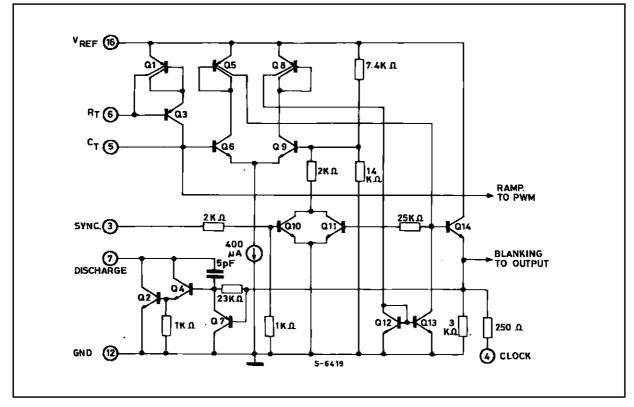
Since both the compensation and soft-start terminals (Pins 9 and 8) have current source pull-ups, either can readily accept a pull-down signal which only has to sink a maximum of $100 \,\mu$ A to turn off the outputs. This is subject to the added requirement of discharging whatever external capacitance may be attached to these pins.

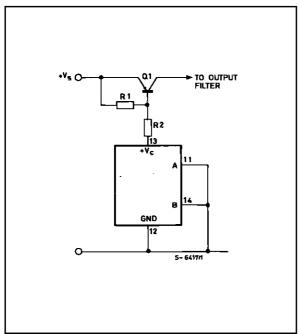
An alternate approach is the use of the shutdown circuitry of Pin 10 which has been improved to enhance the available shutdown options. Activating this circuit by applying a positive signal on Pin 10 performs two functions : the PWM latch is immediately set providing the fastest turn-off signal to the outputs; and a 150 μA current sink begins to discharge the external soft-start capacitor. If the shutdown command is short, the PWM signal is terminated without significant discharge of the soft-start capacitor, thus, allowing, for example, a convenient implementation of pulse-by-pulse current limiting. Holding Pin 10 high for a longer duration, however, will ultimately discharge this external capacitor, recycling slow turn-on upon release.

Pin 10 should not be left floating as noise pickup could conceivably interrupt normal operation.

SG2525A/27A-SG3525A/27A

Figure 6 : SG1525A Oscillator Schematic.





Figure 7 : SG1525A Output Circuit (1/2 circuit shown).

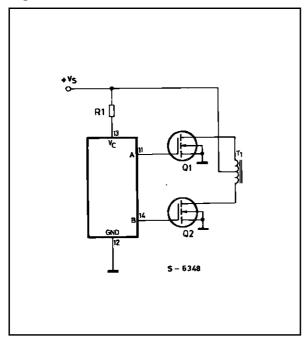

SG2525A/27A-SG3525A/27A

Figure 8.

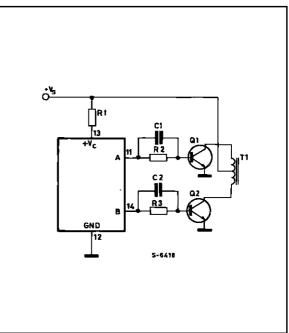

For single-ended supplies, the driver outputs are grounded. The V_C terminal is switched to ground by the totem-pole source transistors on alternate oscillator cycles.

Figure 10.

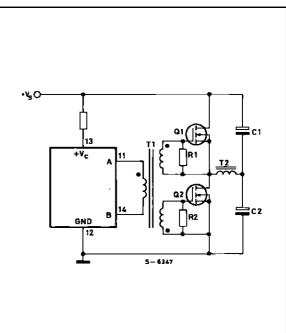
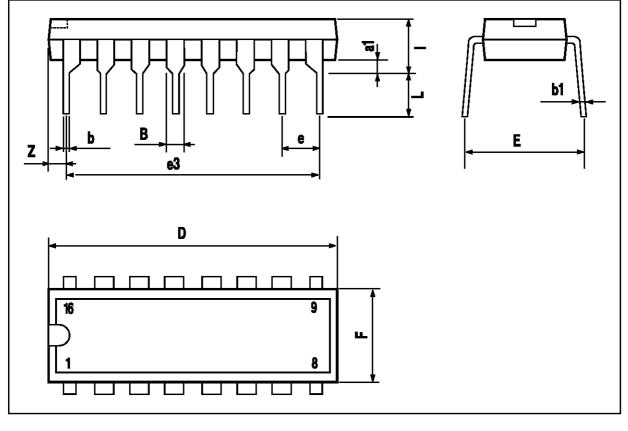

The low source impedance of the output drivers provides rapid charging of Power Mos input capacitance while minimizing external components.

Figure 9.

In conventional push-pull bipolar designs, forward base drive is controlled by $R_1 - R_3$. Rapid turn-off times for the power devices are achieved with speed-up capacitors C_1 and C_2 .

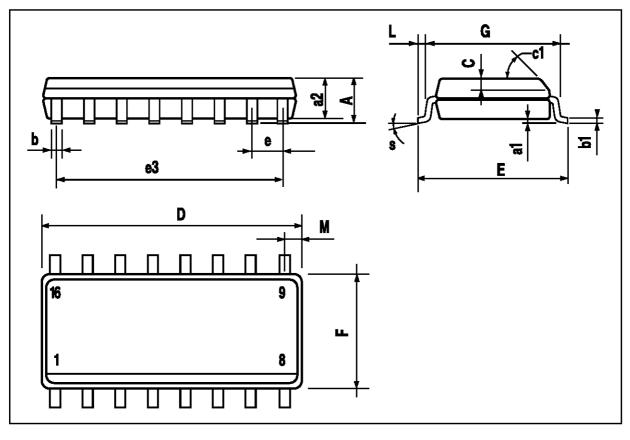
Figure 11.



Low power transformers can be driven directly by the SG1525A. Automatic reset occurs during dead time, when both ends of the primary winding are switched to ground.

DIP16 PACKAGE MECHANICAL DATA

DIM.		mm			inch	
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
a1	0.51			0.020		
В	0.77		1.65	0.030		0.065
b		0.5			0.020	
b1		0.25			0.010	
D			20			0.787
E		8.5			0.335	
е		2.54			0.100	
e3		17.78			0.700	
F			7.1			0.280
I			5.1			0.201
L		3.3			0.130	
Z			1.27			0.050



SGS-THOMSON MICROELECTRONICS

57

DIM.		mm			inch	
Dilvi.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
А			1.75			0.069
a1	0.1		0.25	0.004		0.009
a2			1.6			0.063
b	0.35		0.46	0.014		0.018
b1	0.19		0.25	0.007		0.010
С		0.5			0.020	
c1			45°	(typ.)		
D	9.8		10	0.386		0.394
E	5.8		6.2	0.228		0.244
е		1.27			0.050	
e3		8.89			0.350	
F	3.8		4.0	0.150		0.157
L	0.4		1.27	0.150		0.050
М			0.62			0.024
S			8° (1	max.)		

SO16 NARROW PACKAGE MECHANICAL DATA

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information pre-viously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectronics.

© 1996 SGS-THOMSON Microelectronics All Rights Reserved

SGS-THOMSON Microelectronics GROUP OF COMPANIES Australia - Brazil - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands - Singapore -Spain - Sweden - Switzerland - Taiwan - Thaliand - United Kingdom - U.S.A.

